
BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

Lab Sheet - 1

Learning Objectives:

i) Getting started with HDL program using Icarus Simulator

ii) Understand basic Verilog language primitives (e.g. module, data

types, identifiers, vectors, registers, keywords etc.)
iii) To understand the various types of modelling

iv) Lab Exercises

What is Verilog?

Verilog is one of the two-major Hardware Description Languages (HDL) used by

hardware designers in industry and academia. VHDL is the other one. Many feel that

Verilog is easier to learn and use than VHDL. VHDL was made an IEEE Standard in

1987, and Verilog in 1995. Verilog is very similar to C-language.

Verilog allows a hardware designer to describe designs at a high level of abstraction such

as at the architectural or behavioral level as well as the lower implementation levels (i. e.,

gate and switch levels) leading to Very Large Scale Integration (VLSI) Integrated

Circuits (IC) layouts and chip fabrication. A primary use of HDLs is the simulation of

designs before the designer must commit to fabrication.

The Verilog language provides the digital designer with a means of describing a digital

system at a wide range of levels of abstraction, and, at the same time, provides access to

computer-aided design tools to aid in the design process at these levels.

Verilog Structure

Verilog differs from regular programming languages (C, Pascal, ...) in 3 main aspects:

1) Simulation time concept,

2) Multiple threads, and

3) Some basic circuit concepts like network connections and primitive gates.

If you know how to program in C and you understand basic digital design then learning

Verilog will be easy.

1. Modules

In Verilog, circuit components are designed inside a module. Modules can contain both

structural and behavioral statements. Structural statements represent circuit components

like logic gates, counters, and microprocessors. Behavioral level statements are

programming statements that have no direct mapping to circuit components like loops, if-

then statements, and stimulus vectors which are used to exercise a circuit.

A module starts with the keyword module followed by an optional module name and an

optional port list. The key word endmodule ends a module.

Syntax: module <module_name > (<module_terminal_list>);

.....

<module_internals>

.....

.....

endmodule

Example:

`timescale 1ns / 1ps

//create a NAND gate out of an AND and an Invertor

module some_logic_component (c, a, b);

// declare port signals

output c;

input a, b;

// declare internal wire

wire d;

//instantiate structural logic gates

and a1(d, a, b); //d is output, a and b are inputs

not n1(c, d); //c is output, d is input

endmodule

2. Levels of Abstraction in Verilog Programming:

I. Gate Level Modeling

II. Data Flow Modeling

III. Behavioral Modeling

IV. RTL Modeling

Gate Level Modeling
This is the basic level of modeling in terms of logic gates and the connections between

these gates. Most digital designs are now done at the gate level or higher levels of

abstractions. At gate level, the circuit is described in terms of gates say AND, OR etc.

Hardware design at this level is intuitive for a user who is familiar with the basic

knowledge of Digital logic Design. This allows the user to see a direct correspondence

between the Verilog Description and the Circuit Diagram.

Example:

A

F
B

 S

 Figure 1. A 2:1 Multiplexer

In terms of Logic Gates, F= OR (AND (S, A), AND ((NOT (S)), B))

Code:

module mux2to1_gate (a,b,s,f);

input a,b,s;

output f;
wire c,d,e;

not n1(e,s);// e=~s
and a1(c,a,s);

and a2(d,b,e);

or o1(f,c,d);

endmodule

For Further reading on Gate Level Modeling refer Chapter 5 of the book “Verilog HDL”

by Samir Palnitkar.

Data Flow Modeling

The design at this level specifies how the data flows between the hardware registers and

how the data is processed. For small circuits the gate level modeling works well as the

number of gates is limited. However, in complex designs the designers may have to

concentrate on implementing the function than bother about the gates. Verilog allows a

circuit to be designed in terms of the data flow between registers and how a design

processes data rather than instantiation of gates using expressions (=), operators like (&,|,

?) etc.. and continuous assignments(the assign statement).

The 2:1 Multiplexer can be written as

F= (S&A)|(~S&B);

Or

F = S ? A : B;

Code:
module mux2to1_df (a,b,s,f);

input a,b,s;

output f;

assign f = s ? a : b;

endmodule

For Further reading on Data Flow Modeling refer Chapter 6 of the book “Verilog HDL”

by Samir Palnitkar.

Behavioral Modeling

This is the highest level of abstraction provided by Verilog. The design at this level is

similar to an algorithm. This design is very similar to „C‟ programming. A module can be

implemented in terms of the desired design algorithm without looking into the hardware

details using structured procedures (like always and initial), conditional statements (like

if and else) and multiway branching (like case, casex and casez).

[Note: THOUGH THE CODING STYLE IS SIMILAR TO C, THE DIFFERENCE IS

THAT, THE VERILOG PROGRAM CONSISTS OF MODULES THAT MAY RUN

CONCURRENTLY. Remember, that you need to simulate hardware and not software.]

The 2:1 Multiplexer can be written as

If(s= = 1)

F=A;

 Else

 F=B

Code:

module mux2to1_beh(a,b,s,f);

input a,b,s;

output f;

reg f;

always@(s or a or b)

if(s==1) f = a;
else f = b;

endmodule

For Further reading on Behavioral Modeling refer Chapter 7 of the book “Verilog HDL”

by Samir Palnitkar.

RTL Modeling

The term Register Transfer Level Modeling refers to the Verilog description that uses a

combination of both Behavioral and Data Flow constructs that is synthesizable. More on

this later.

For the input and output connections for the ports, please refer Sec 4.2.3 Port Connection

Rules.

Simulation

Testbench or Stimulus

Once a design block is completed, it must be tested for its correctness. The functionality

of a design block can be tested by applying stimulus and checking the results. We call

such a block Stimulus or TestBench. It is recommended to keep the design and the

stimulus blocks separate. Given below is an example to test the 2:1 Multiplexer we have

designed so far.

Code:

module testbench;

reg a,b,s;
wire f;

mux2to1_gate mux_gate (a,b,s,f);
initial

begin

endmodule

end

$monitor(,$time," a=%b, b=%b, s=%b f=%b",a,b,s,f);

#0 a=1'b0;b=1'b1;

#2 s=1'b1;

#5 s=1'b0;

#10 a=1'b1;b=1'b0;

#15 s=1'b1;

#20 s=1'b0;

#100 $finish;

Note: To test out the data flow model and the behavioral model of the 2:1 Multiplexer,

replace

mux2to1_gate mux_gate (a,b,s,f);
with

mux2to1_df mux_df (a,b,s,f);
or with

mux2to1_beh mux_beh (a,b,s,f);

Please refer section 2.5 and 2.6 of the book “Verilog HDL” by Samir Palnitkar.

Lab Exercises:

Note: Icarus Verilog Simulator has to be used for implementing the Lab

exercises.
(1) Implement BCD to gray code conversion using following:

i. Gate level model

ii. Dataflow modeling

Write a test bench which includes all cases and checks the correctness of the design.

(2) Implement a 4 bit magnitude comparator using

i. Behavioral modeling

ii. Dataflow modeling

iii. Gate Level modeling

Write a test bench to check the correctness of the design.

Take Home Exercises:

(1.a.) Implement a 1-bit full adder using following:

i. Gate level model

ii. Data flow model

Write a test bench which includes all cases and checks the correctness of the design.

(1.b.) Design a 4-bit adder by using 1-bit adder. Write a test bench which checks the

correctness of the design.

(1.c.) Design a 4 – bit Adder / Subtractor with a select line S. Write a test bench which

checks the correctness of the design.
