
BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

CS F342 Computer Architecture

Lab Sheet - 3 Topic: Sequential Circuit Modeling

Learning Objectives:

i) Introduction to Sequential circuits

ii) Blocking and Non-Blocking Assignments

iii) Sequential and Parallel blocks

iv) Finite State Machine Implementation (Mealy Machine)

v) 4-bit Shift Register Implementation

Introduction:

In the first two labs, we have learned how to simulate digital circuits using different types

of modeling (i.e. Gate level, Data flow, Behavioral) on combinational circuit simulation

in VeriLog. In this lab, we will learn how to simulate digital circuits using different types

of modeling on sequential circuit simulation in VeriLog.

A Sequential circuit is a circuit made up by combining logic gates such that the required

logic at the output(s) depends not only on the current input logic conditions but also on

the past inputs, outputs and sequences.

Sequential Circuits has a feedback of the output(s) from a stage to the input of either that

stage or any previous stage.

Problem 1:

module dff_sync_clear(d, clearb,

clock, q);

input d, clearb, clock;

output q;

reg q;

always @ (posedge clock)

begin

if (!clearb) q <= 1'b0;

else q <= d;

end

endmodule

module dff_async_clear(d

, clearb, clock, q);

input d, clearb, clock;

output q;

reg q;

always @ (negedge cle

arb or posedge clock)

begin

if (!clearb) q <= 1’b0;

else q <= d;

end

endmodule

// Test Bench

module Testing;

reg d, clk, rst;

wire q;

dff_sync_clear dff (d, clk, rst, q); // Or dff_async_clear dff (d, clk,

rst, q);

//Always at rising edge of clock display the signals

always @(posedge clk)begin

$display("d=%b, clk=%b, rst=%b, q=%b\n", d, clk, rst, q);

end

//Module to generate clock with period 10 time units

initial begin

forever begin

clk=0;

#5

clk=1;

#5

clk=0;

end

end

initial begin

d=0; rst=1;

#4

d=1; rst=0;

#50

d=1; rst=1;

#20

d=0; rst=0;

end

endmodule

Blocking and Non-Blocking Assignments:

In Blocking assignment, evaluation and assignment are immediate.

always @ (a or b or c)

begin

x = a | b; 1.Evaluate a|b, assign result to x.

y = a ^ b ^ c; 2.Evaluate a^b^c, assign result to y.

z = b & ~c; 3.Evaluate b& ~c, assign result to z.

end

In Nonblocking assignment, all assignments deferred until all right-hand sides have been

evaluated (end of simulation timestep).

always @ (a or b or c)

begin

x <= a | b; 1.Evaluate a|b, but differ assignment of x.

y <= a ^ b ^ c; 2.Evaluate a^b^c, but differ assignment of y.

z <= b & ~c; 3.Evaluate b& ~c, but differ assignment of z.

end 4.Assign x, y, and z with their new values

 q1 q2

 in out

Sequential Block and Parallel Block

module nonblocking(in, clk,

out);

input in, clk;

output out;

reg q1, q2, out;

always @ (posedge clk)

begin

q1 <= in;

q2 <= q1;

out <= q2;

end

endmodule

module blocking(in, clk,

out);

input in, clk;

output out;

reg q1, q2, out;

always @ (posedge clk)

begin

q1 = in;

q2 = q1;

out = q2;

end

endmodule

D Q

D Q

D Q

In verilog, we have two types of block – sequential blocks and parallel blocks.

Sequential Block

In the sequential blocks, begin and end keywords are used to group the statements, All

the statement in this group executes sequentially. (this rule is not applicable for

nonblocking assignments). If the statements are given with some timing/delays then the

given delays get added into. It would be clearer with following examples.

The Example - 1 is showing the sequential block without delays, All the statements

written inside the begin-end will execute sequentially and after the execution of initial

block, final values are a=1, b=0 and c=1

The Example - 2 is showing the sequential block with delays, In this case, the same

statements are given with some delays, Since All the statements execute sequentially, the

a will get value 1 after 5 time unit, b gets value after 15 time unit and c will take value 1

after 30 time unit

Parallel Block:

The statements are written inside the parallel block, execute parallel, If the sequencing is

required then it can be given by providing some delays before the statements. In parallel

blocks, all the statements occur within fork and join

Mealy Machine:

In Example-1, all the statements written inside the fork and join, executes parallel, it

means the c with have value ‘1′ after 15 time unit.

Example - 1:

reg a,b,c;

initial

begin

 a = 1'b1;

 b = 1'b0;

 c = 1'b1;

end

Example - 2:

reg a,b,c;

initial

begin

 #5 a = 1'b1;

 #10 b = 1'b0;

 #15 c = 1'b1;

end

Example - 1:

reg a,b,c;
initial
fork
 #5 a = 1′b1;
 #10 b = 1′b0;
 #15 c = 1′b1;
join

Example - 2:

reg a,b,c,d;
initial
begin
fork
 #5 a = 1′b1;
 #10 b = 1′b0;
 #15 c = 1′b1;
join
#30 d = 1′b0;
end

In Example-2, the initial block contains begin-end and fork-join both. In this case c takes

value after 15 time unit, and d takes the value after 30 time unit.

Mealy Machine:

A Mealy machine is a finite state transducer that generates an output based on its current

state and input. This means that the state diagram will include both an input and output

signal for each transition edge.

Solution:

module mealy(clk, rst, inp, outp);

input clk, rst, inp;

output outp;

reg [1:0] state;

reg outp;

always @(posedge clk, posedge rst) begin

if(rst) begin

state <= 2'b00;

outp <= 0;

end

else begin

case(state)

2'b00: begin

if(inp) begin

state <= 2'b01;

outp <= 0;

end

else begin

state <= 2'b10;

outp <= 0;

end

end

2'b01: begin

if(inp) begin

state <= 2'b00;

outp <= 1;

end

else begin

state <= 2'b10;

outp <= 0;

end

end

2'b10: begin

if(inp) begin

state <= 2'b01;

outp <= 0;

end

else begin

state <= 2'b00;

outp <= 1;

end

end

default: begin

state <= 2'b00;

outp <= 0;

end

endcase

end

end

endmodule

// Test Bench

module mealy_test;

reg clk, rst, inp;

wire outp;

reg[15:0] sequence;

integer i;

mealy duty(clk, rst, inp, outp);

initial

begin

clk = 0;

rst = 1;

sequence = 16'b0101_0111_0111_0010;

#5 rst = 0;

for(i = 0; i <= 15; i = i + 1)

begin

inp = sequence[i];

#2 clk = 1;

#2 clk = 0;

$display("State = ", duty.state, " Input = ", inp, ", Output = ",

outp);

end

testing;

end

task testing;

for(i = 0; i <= 15; i = i + 1)

begin

inp = $random % 2;

 #2 clk = 1;

 #2 clk = 0;

 $display("State = ", duty.state, " Input = ", inp, ", Output =

", outp);

end

endtask

endmodule

Problem 2: Implementing a 4-bit Shift Register

An n-bit shift register is generally comprised of a set of n flip-flops which provide n bits

of storage. The flip-flops are connected in such a way as to produce a shifting action of

the bits stored in the individual flip-flops. The bits shift at the active portion of the system

clock which is usually a clock edge.

Following figure shows a 4-bit shift register that uses D flip-flops for the individual

storage elements.

Figure 1: Diagram for a 4-bit shift register.

Solution:

//VeriLog Code for 4 bit Shift Register.

module shiftreg(EN, in, CLK, Q);

parameter n = 4;

input EN;

input in;

input CLK;

output [n-1:0] Q;

reg [n-1:0] Q;

initial

Q=4'd10;

always @(posedge CLK)

begin

if (EN)

Q={in,Q[n-1:1]};

end

endmodule

// Test Bench of 4 bit shift register

module shiftregtest;

parameter n= 4;

reg EN,in , CLK;

wire [n-1:0] Q;

//reg [n-1:0] Q;

shiftreg shreg(EN,in,CLK,Q);

initial

begin

CLK=0;

end

always

#2 CLK=~CLK;

initial

$monitor($time,"EN=%b in= %b Q=%b\n",EN,in,Q);

initial

begin

in=0;EN=0;

#4 in=1;EN=1;

#4 in=1;EN=0;

#4 in=0;EN=1;

#5 $finish;

end

endmodule

Exercises:

(Q.1) Implement Binary 4-bit Synchronus counter using J-K Flip Flops. Verify the

design by writing a testbench module.

(Q.2.) Design a FSM (Finite State Machine) to detect a sequence 10110.

(Q.3.) Design and implement a four-bit serial adder. Make use of four-bit shift register

constructed in Problem 2. Verify the design by writing a testbench module.

