
BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

CS F342 Computer Architecture

Lab Sheet - 7 Topic: Pipeline Design

Learning Objectives:

i) Modeling 3-stage pipeline design shown below in Verilog

ii) Designing modules for each hardware component and some support modules

occurring in the pipeline design.

iii) Implementation of the modules in Verilog

iv) Integrating these modules

v) Writing test bench

Today we have to implement a simple 3-stage pipeline design described below using

Verilog. To accomplish this, first identify the hardware components of the pipeline

design and write separate modules for each component. Integrate these modules to realize

the complete pipeline design circuit. Test the correctness of the complete implementation

by supplying a sequence of instructions as input.

I. Modeling Pipeline Design in Verilog:

Fig.1. 3-Stage Pipeline Design Circuit

Description of 3-stage Pipeline Desgin:

Enco-

der Ctrl

A

B A

B

ALU

X

Even

Parity

Gener

-ator

It consist of three pipeline stages: fetch, execute and generate parity and two pipeline

registers.

Let us consider, there are 8 instructions in ISA each require 3-bit opcode. The encoder

takes 8-bit function code of the instruction as input and produces a 3-bit op-code (or

Ctrl) as output. The ALU shown in the above design can perform 8 different operations

on the 4-bit operands A and B based on the 3-bit opcode (or Ctrl) and produces a 4-bit

output X. The output X is given as input to the Even Parity Generator which genearates

the parity.

1. ctrl = 3'b000 : add

2. ctrl = 3'b001 : sub

3. ctrl = 3'b010 : xor

4. ctrl = 3'b011 : or

5. ctrl = 3'b100 : and

6. ctrl = 3'b101 : nor

7. ctrl = 3'b110 : nand

8. ctrl = 3'b111 : xnor

In first stage (Fetch stage (F)), following operations are done:

1. 8-bit function code of the operation to be performed in the instruction is given as

input to the encoder, encoder encodes the function code and outputs the

corresponding 3-bit op-code. This op-code is stored in the first pipeline register.

2. Two 4-bit operands A and B are stored in first pipeline register which will be used

in second stage.

In second stage (Execute stage (E)), following operations are carried out:

1. Op-code, operand A and operand B are read from the first pipeline register and

given as input to the ALU.

2. Based on the op-code, ALU performs operation on two operands A and B.

3. Output of ALU is stored in second pipeline register.

In third stage (Generate Parity (GP)), following operations are done:

1. Output of ALU X is read from second pipeline register and given as input to Even

Parity Generator.

2. Even parity generator generates parity of the input 4-bit number.

II. Designing modules for each hardware component

Write separate modules for encoder, ALU and Even Parity Generator. Input and output

to each of the modules are already explained above. Write a module which will integrate

these modules to realize the pipeline design circuit.

Make use of behavioural modeling for encoder, dataflow modeling for ALU and Even

Parity Generator. Write a test bench to test different instructions given in ISA for any

two operand values serially.
