
RAID: High-Performance, Reliable Secondary Storage

PETER M. CHEN

Department of Electr~cal Engineering and Computer Sctence, 1301 Beal Avenue,

University of Michigan, Ann Arbor, Michigan, 48109-2122

EDWARD K. LEE

DECSystems Research Center, 130 Lytton Avenue. Palo Alto, California 94301-1044

GARTH A. GIBSON

School of Computer Sctence, Carnegie Mellon University, 5000 Forbes Aven ue,

Pittsburgh, Pennsylvania 15213-3891

RANDY H. KATZ

Department of Electrical Engineering and Computer Sctence. 571 Evans Hall,

University of California, Berkeley, California 94720

DAVID A. PATTERSON

Department of Electrical Engineering and Computer Science, 571 Euans Hall,

University of Cahfornia, Berkeley, California 94720

Disk arrays were proposed in the 1980s as a way to use parallelism between multiple

disks to improve aggregate 1/0 performance. Today they appear in the product lines of

most major computer manufacturers. This article gives a comprehensive overview of

disk arrays and provides a framework in which to organize current and future work.

First, the article introduces disk technology and reviews the driving forces that have

popularized disk arrays: performance and reliability. It discusses the two architectural

techniques used in disk arrays: striping across multiple disks to improve performance

and redundancy to improve reliability. Next, the article describes seven disk array

architectures, called RAID (Redundant Arrays of Inexpensive Disks) levels O–6 and

compares their performance, cost, and reliability. It goes on to discuss advanced

research and implementation topics such as refining the basic RAID levels to improve

performance and designing algorithms to maintain data consistency. Last, the article

describes six disk array prototypes or products and discusses future opportunities for

research, with an annotated bibliography of disk array-related literature.

Categories and Subject Descriptors: B.4.2 [Input/ Output and Data

Communications]: Input/Output Devices; B.4.5 [Input/ Output and Data

Communications]: Reliability, Testing, and Fault-Tolerance; D.4.2 [Operating

Systems]: Storage Management; E.4 [Data]: Coding and Information Theory;

General Terms: Design, Performance, Reliability

Additional Key Words and Phrases: Disk Array, parallel 1/0, RAID, redundancy,

storage, striping

Permission to copy without fee all or part of this material is granted provided that the copies are not made

or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its data appear, and notice is given that copying is by permission of the Association for Computing
Machinery, To copy otherwise, or to republish, requires a fee and/or specific permission.
01994 ACM 0360-0300/94/0600-0145 $03,50

ACM Computmg Surveys, Vol 26, No. 2, June 1994

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

46 ● Peter M. Chen et al.

CONTENTS

1 INTRODUCTION
2 BACKGROUND

2.1 Disk Termmology
2.2 Data Paths
2.3 Technology Trends

3 DISK ARRAY BASICS
3.1 Data StrlpIng and Redundancy
32 Basic RAID Orgamzations

33 Performance and C!ost Comparisons
34 Reliability
35 Implementation Considerations

4 ADVANCED TOPICS

41 Impruvmg Small Write Performance for
RAID Leve15

42 Declustered Parity
43 Exploltmg On-I,lne Spare Disks
44 Data Strip] ngm Dlsli Arrays
45 Performance and Rellabdlty Modellng

5. CASE STUDIES
51 Thmkmg Mach] nes Corporation ScaleArray

52 StorageTek Iceherg 9200 D]sk Array Subsystem
5.3 NCR 6298
5.4 l’lckerTAIP/DataMesh

5.5 The RAID-11 Storage Server
56 IBM Hagar Disk Array Controller

6 OPPORTUNITIES F’OR FUTURE RESEARCH
61 Experience with Disk Arrays
62 InteractIon among New Orgamzatlons
63 Scalabdlty, Massively Parallel Computers,

and Small Disks

64 Latency
7 CONCLUSIONS
ACKNOWLEDGMENTS
ANNOTATED BIBLIOGRAPHY

1. INTRODUCTION

In recent years, interest in RAID, Redun-
dant Arrays of Inexpensive Disks,l has
grown explosively. The driving force be-
hind this phenomenon is the sustained
exponential improvements in the per-
formance and density of semiconductor
technology. Improvements in semicon-
ductor technology make possible faster
microprocessors and larger primary
memory systems which in turn require

1Because of the restrictiveness of “Inexpensive,”
sometimes RAID is said to stand for “Redundant
Arrays of Independent Disks.”

larger, higher-performance secondary
storage systems. These improvements
have both quantitative and qualitative
consequences.

On the quantitative side, Amdahl’s
Law [Amdahl 1967] predicts that large
improvements in microprocessors will re-
sult in only marginal improvements
in overall system performance unless
accompanied by corresponding improve-
ments in secondary storage systems. Un-
fortunately, while RISC microprocessor
performance has been improving 50~0 or
more per year [Patterson and Hennessy
1994, p. 27], disk access times, which
depend on improvements of mechanical
systems, have been improving less than
10% per year. Disk transfer rates, which
track improvements in both mechanical
systems and magnetic-media densities,
have improved at the faster rate of ap-
proximately 20% per year, but this is
still far slower than the rate of processor
improvement. Assuming that semicon-
ductor and disk technologies continue
their current trends, we must conclude
that the performance gap between micro-
processors and magnetic disks will con-
tinue to widen.

In addition to the quantitative effect, a
second, perhaps more important, qualita-
tive effect is driving the need for higher-
performance secondary storage systems.
As microprocessors become faster, they
make possible new applications and
greatly expand the scope of existing ap-
plications. In particular, image-intensive
applications such as video, hypertext, and
multimedia are becoming common. Even
in existing application areas such as
computer-aided design and scientific
computing, faster microprocessors make
it possible to tackle new problems requir-
ing faster access to larger data sets. This
shift in applications, along with a trend
toward large, shared, high-performance,
network-based storage systems, is caus-
ing us to reevaluate the way we design
and use secondary storage systems [Katz
1992].

Disk arrays, which organize multiple,
independent disks into a large, high-per-
formance logical disk, are a natural solu-

ACM Computing Surveys, Vol 26, No 2, June 1994

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

sdnlab

RAID ● 147

tion to the problem. Disk arrays stripe
data across multiple disks and access
them in parallel to achieve both higher
data transfer rates on large data access-
es and higher 1/0 rates on small data
accesses [Salem and Garcia-Molina 1986;
Livny et al. 1987]. Data striping also re-
sults in uniform load balancing across all
of the disks, eliminating hot spots that
otherwise saturate a small number of
disks while the majority of disks sit idle.

Large disk arrays, are highly vulnera-
ble to disk failures however. A disk array
with 100 disks is 100 times more likely to
fail than a single-disk array. An MTTF
(mean-time-to-failure) of 200,000 hours,
or approximately 23 years, for a single
disk implies an MTTF of 2000 hours, or
approximately three months, for a disk
array with 100 disks. The obvious solu-
tion is to employ redundancy in the form
of error-correcting codes to tolerate disk
failures. This allows a redundant disk
array to avoid losing data for much longer
than an unprotected single disk. How-
ever, redundancy has negative conse-
quences. Since all write operations must
update the redundant information, the
performance of writes in redundant disk
arrays can be significantly worse than
the performance of writes in nonredun-
dant disk arrays. Also, keeping the re-
dundant information consistent in the
face of concurrent 1/0 operations and
system crashes can be difficult.

A number of different data-striping and
redundancy schemes have been devel-
oped. The combinations and arrange-
ments of these schemes lead to a bewil-
dering set of options for users and
designers of disk arrays. Each option pre-
sents subtle tradeoffs among reliability,
performance, and cost that are difficult
to evaluate without understanding the
alternatives. To address this problem,
this article presents a systematic tutorial
and survey of disk arrays. We describe
seven basic disk array organizations
along with their advantages and disad-
vantages and compare their reliability,
performance, and cost. We draw atten-
tion to the general principles governing
the design and configuration of disk ar-

rays as well as practical issues that must
be addressed in the implementation of
disk arrays. A later section describes op-
timization and variations to the seven
basic disk array organizations. Finally,
we discuss existing research in the mod-
eling of disk arrays and fruitful avenules
for future research. This article should be
of value to anyone interested in disk ar-
rays, including students, researchers, de-
signers, and users of disk arrays.

2. BACKGROUND

This section provides basic background
material on disks, 1/0 data paths, and
disk technology trends for readers who
are unfamiliar with secondary storage
systems.

2.1 Disk Terminology

Figure 1 illustrates the basic components
of a simplified magnetic disk drive. A
disk consists of a set of platters coated
with a magnetic medium rotating at a
constant angular velocity and a set of
disk arms with magnetic read/write
heads that are moved radially across the
platters’ surfaces by an actuator. Once
the heads are correctly positioned, data
is read and written in small arcs called
sectors on the platters’ surfaces as the
platters rotate relative to the heads. Al-
though all heads are moved collective] y,
in almost every disk drive, only a single
head can read or write data at any given
time. A complete circular swath of data is
referred to as a track, and each platter’s
surface consists of concentric rings of
tracks. A vertical collection of tracks at
the same radial position is logically re-
ferred to as a cylinder. Sectors are numb-
ered so that a sequential scan of all
sectors traverses the entire disk in the
minimal possible time.

Given the simplified disk described
above, disk service times can be brok-
en into three primary components: seek

time, rotational latency, and data traris-

fer time. Seek time is the amount of time
needed to move a head to the correct
radial position and typically ranges from

ACM Computing Surveys, Vol. 26, No 2, June 1994

148 * Peter M. Chen et al.

Plattel-

Inner Track l+tld

__..–— .—----

...~-k-. --- —-.. ——-- ~-----
-._ ._.. ._ ___ ----------

-Actuator

Figure 1. Disk terminology Heads res] de on arms which are positioned by actuators. Tracks are
concentric rings cm a platter. A sector is the basic unit of reads and writes A cylinder is a stack of tracks at
one actuator positron. An HDA (head-disk assembly) is everything in the figure plus the air-tight casing
In some devices it M possible to transfer data from multiple surfaces simultaneously, but this is both rare
and expensive. The collection of heads that participate m a single logical transfer that is suread over.-
multiple surfaces is called a head groap.

1 to 30 milliseconds depending on the
seek distance and the particular disk.
Rotational latency is the amount of time
needed for the desired sector to rotate
under the disk head. Full rotation times
for disks vary currently from 8 to 28
milliseconds. The data transfer time is
dependent on the rate at which data can
be transferred to/from a platter’s surface
and is a function of the platter’s rate of
rotation, the density of the magnetic me-
dia, and the radial distance of the head
from the center of the platter—some
disks use a technique called zone-bit-re-
cording to store more data on the longer
outside tracks than the shorter inside
tracks. Typical data transfer rates range
from 1 to 5 MB per second. The seek time
and rotational latency are sometimes col-
lectively referred to as the heacl-position-

ing time. Table 1 tabulates the statistics
for a typical high-end disk available in
1993.

The slow head-positioning time and
fast data transfer rate of disks lead to
very different performance for a se-
quence of accesses depending on the size
and relative location of each access. Sup-
pose we need to transfer 1 MB from the
disk in Table 1, and the data is laid out
in two ways: sequential within a single
cylinder or randomly placed in 8 KB
blocks. In either case the time for the

Table 1. Speclflcatlons for the Seagate ST43401 N

Elite-3 SCSI D!sk Drive

Form Factor/Disk Diameter 5,25 inch

Capxity 2.8 GB

Cylinders 2627

Tracks Per Cylinder 21

Sec[ors Pcr Tmck -99

Bytes Pcr Sector 512

Full Rolahon Time 11.lms

Mlnunum Seek

(single cylinder)
1,7 ms

Average Seek
11.Oms

(random cylinder to cylmdcr)

~
Average seek in this table 1s calculated assuming a
umform distribution of accesses. This is the stan-
dard way manufacturers report average seek times.
In reality, measurements of production systems
show that spatial locality sigmficantly lowers the
effective average seek distance [Hennessy and Pat-
terson 1990, p 559]

actual data transfer of 1 MB is about 200
ms. But the time for positioning the head
goes from about 16 ms in the sequential
layout to about 2000 ms in the random
layout. This sensitivity to the workload is
why I/O-intensive applications are cate-

ACM Comput]ng Surveys, Vol 26, No 2, June 1994

RAID - 14’9

gorized as high data rate, meaning mini-
mal head positioning via large, sequen-
tial accesses, or high 1/0 rate, meaning
lots of head positioning via small, more
random accesses. For example, scientific
programs that manipulate large arrays
of data fall in the high data rate cate-
gory, while transaction-processing pro-
grams fall in the high 1/0 rate category.

2.2 Data Paths

A hierarchy of industry standard inter-
faces has been defined for transferring
data recorded on a disk platter’s surface
to or from a host computer. In this sec-
tion we review the complete data path,
from a disk to a users’ application (Fig-
ure 2). We assume a read operation for
the purposes of this discussion.

On the disk platter’s surface, informa-
tion is represented as reversals in the
direction of stored magnetic fields. These
“flux reversals” are sensed, amplified,
and digitized into pulses by the lowest-
level read electronics. The protocol
ST506/ 412 is one standard that defines
an interface to disk systems at this low-
est, most inflexible, and technology-de-
pendent level. Above this level of the read
electronics path, pulses are decoded to
separate data bits from timing-related
flux reversals. The bit-level ESDI (En-
hanced Small Device Interface) and SMD
(Storage Module Interface) standards de-
fine an interface at this more flexible,
encoding-independent level. Then, to be
transformed into the highest, most flexi-
ble packet-level, these bits are aligned
into bytes, error-correcting codes applied,
and the extracted data delivered to the
host as data blocks over a peripheral bus
interface such as SCSI (Small Computer
Standard Interface), or IPI-3 (the third
level of the Intelligent Peripheral Inter-
face). These steps are performed today by
intelligent on-disk controllers, which of-
ten include speed matching and caching
“track buffers.” SCSI and IPI-3 also in-
clude a level of data mapping: the com-
puter specifies a logical block number,
and the controller embedded on the disk
maps that block number to a physical

cylinder, track, and sector. This mapping
allows the embedded disk controller to
avoid bad areas of the disk by remapping
logical blocks that are affected to new
areas of the disk.

Topologies and devices on the data path
between disk and host computer vary
widely depending on the size and type of
1/0 system. Mainframes have the rich-
est 1/0 systems, with many devices and
complex interconnection schemes to ac-
cess them. An IBM channel path, which
encompasses the set of cables and associ-
ated electronics that transfer data and
control information between an 1/0 de-
vice and main memory, consists of a
channel, a storage director, and a head

of string. The collection of disks that
share the same pathway to the head of
string is called a string. In the worksta-
tion/file server world, the channel pro-
cessor is usually called an 1/0 controller
or host-bus adaptor (HBA), and the func-
tionality of the storage director and head
of string is contained in an embedded
controller on the disk drive. As in the
mainframe world, the use of high-level
peripheral interfaces such as SCSI and
IPI-3 allow multiple disks to share a sin-
gle peripheral bus or string.

From the HBA, data is transferred via
direct memory access, over a system bus,
such as VME (Versa Module Eurocarcl),
S-Bus, MicroChannel, EISA (Extended
Industry Standard Architecture), or PCI
(Peripheral Component Interconnect), to
the host operating system’s buffers. Then,
in most operating systems, the CPU per-
forms a memory-to-memory copy over a
high-speed memory bus from the operat-
ing system buffers to buffers in the appli-
cation’s address space.

2.3 Technology Trends

Much of the motivation for disk arrays
comes from the current trends in disk
technology. As Table 2 shows, magnetic
disk drives have been improving rapidly
by some metrics and hardly at all by
other metrics. Smaller distances between
the magnetic read/write head and the
disk surface, more accurate positioning

ACM Computmg Surveys, Vol. 26, No 2, June 1994

.-A -. ..-,

15U “ Yeter M. (,’hen et al.

M

3~fA

E!:?!
or C7vmntl Proccs70r

I

+

S1l-loz——..

_d__

HDisk Cont!ollcr/
Slor<lgt Dltcctor

& T!xh Bullcr$

L
.
T.Clocking

.

nlilgncl]c

lPI-3, SCSI-I, SCSI-2, DEC C1/MSCP

IPI-2, SCSI-I,DECSD1,
IE+hlC1l’i[mlP,III1 ([111,1blWk\,l

1

DI\k Cooitmllcr/
Slor.yc Iltcclor

Zk
. S\l D, ESDI (h]i,)

Clmhin:

. Srx)(l, srd I I IPUIWSI

nl<lgncllc

Figure 2. Host-to-device pathways. Data that is read from a magnetic disk must pass through many
layers on its way to the requesting processor, Each dashed line marks a standard interface Lower
interfaces such as ST506 deal more closelv with the raw maxnetic fields and are hi~hlv technology
dependent, Higher layers such as SCSI d;al in packets or b~ocks of data and are ;or; technology
independent, A string connects multiple disks to a single 1/0 controller, control of the string 1s distributed
between the 1/0 and disk controllers.

electronics, and more advanced magnetic
media have increased the recording den-
sity on the disks dramatically. This in-
creased density has improved disks in
two ways. First, it has allowed disk ca-
pacities to stay constant or increase, even
while disk sizes have decreased from 5.25
inches in 1983 to 1.3 inches in 1993.
Second, the increased density, along with
an increase in the rotational speed of the
disk, has made possible a substantial in-
crease in the transfer rate of disk drives.

On the other hand, seek times have im-
proved very little, only decreasing from
approximately 20 ms in 1980 to 10 ms
today. Rotational speeds have increased
at a similarly slow rate from 3600 revolu-
tions per minute in 1980 to 5400-7200
today.

3. DISK ARRAY BASICS

This section examines basic issues in
the design and implementation of disk

ACM Computmg Surveys, Vol 26, No 2, June 1994

Table 2.

And Density

Linear Density

Inter-Track Density

Capacity

(3.5” form factor)

Transfer Rate

Seek Time

RAID ● 151

Trends in Disk Technology.

1993
Historical Rate

of Improvement

50-150

Mbils/sq. inch
27% per year

40,000-60,000

bilslinch
13% per year

Magnetic disks are improving rapidly in density and capacity, but more slowly in performance. A real
densitv is the recording densitv Ber sauare inch of magnetic media. In 1989, IBM demonstrated a 1

Gbit/;q.-inch densityi; a labo;a;ory environment. Lines; density is the number of bits written along a
track. Intertrack density refers to the number of concentric tracks on a single platter.

arrays. In particular, we examine the
concepts of data striping and redun-
dancy; basic RAID organizations; perfor-
mance and cost comparisons between the
basic RAID organizations; reliability of
RAID-based systems in the face of sys-
tem crashes, uncorrectable bit-errors, and
correlated disk failures; and finally, is-
sues in the implementation of block-in-
terleaved, redundant disk arrays.

3.1 Data Striping and Redundancy

Redundant disk arrays employ two or-
thogonal concepts: data striping for im-
proved performance and redundancy for
improved reliability. Data striping dis-
tributes data transparently over multiple
disks to make them appear as a single
fast, large disk. Striping improves aggre-
gate 1/0 performance by allowing multi-
ple 1/0s to be serviced in parallel. There
are two aspects to this parallelism. First,
multiple independent requests can be
serviced in parallel by separate disks.
This decreases the queuing time seen by
1/0 requests. Second, single multiple-
block requests can be serviced by multi-
ple disks acting in coordination. This in-
creases the effective transfer rate seen by

a single request. The more disks in the
disk array, the larger the potential per-
formance benefits. Unfortunately, a large
number of disks lowers the overall relia-
bility of the disk array, as mentioned
before. Assuming independent failures,
100 disks collectively have only 1/100th
the reliability of a single disk. Thus, re-
dundancy is necessary to tolerate disk
failures and allow continuous operation
without data loss.

We will see that the majority of redun-
dant disk array organizations can be dis-
tinguished based on two features: (1) the
granularity of data interleaving and (2)
the method and pattern in which the
redundant information is computed and
distributed across the disk array. Data
interleaving can be characterized as ei-
ther fine grained or coarse grained. Fine-
grained disk arrays conceptually inter-
leave data in relatively small units so
that all 1/0 requests, regardless of their
size, access all of the disks in the disk
array. This results in very high data
transfer rates for all 1/0 requests but
has the disadvantages that (1) only one
logical 1/0 request can be in service at
any given time and (2) all disks must
waste time positioning for every request.

ACM Computing Surveys, Vol. 26, No. 2, June 1994

152 ● Peter M. Chen et al.

Coarse-grained disk arrays interleave
data in relatively large units so that small
1/0 requests need access only a small
number of disks while large requests can
access all the disks in the disk array.
This allows multiple small requests to be
serviced simultaneously while still allow-
ing large requests to see the higher
transfer rates afforded by using multiple
disks.

The incorporation of’ redundancy in
disk arrays brings up two somewhat or-
thogonal problems. The first problem is
to select the method for computing the
redundant information. Most redundant
disk arrays today use parity, though some
use Hamming or Reed-Solomon codes.
The second problem is that of selecting a
method for distributing the redundant
information across the disk array. Al-
though there are an unlimited number of
patterns in which redundant information
can be distributed, we classify these pat-
terns roughly into two different distribu-
tions schemes, those that concentrate re-
dundant information on a small number
of disks and those that distributed re-
dundant information uniformly across all
of the disks. Schemes that uniformly dis-
tribute redundant information are gener-
ally more desirable because they avoid
hot spots and other load-balancing prob-
lems suffered by schemes that do not
distribute redundant information uni-
formly. Although the basic concepts of
data striping and redundancy are con-
ceptually simple, selecting between the
many possible data striping and redun-
dancy schemes involves complex trade-
offs between reliability, performance, and
cost.

3.2 Basic RAID Organizations

This section describes the basic RAID
organizations that will be used as the
basis for further examinations of the per-
formance, cost, and reliability of disk
arrays. In addition to presenting RAID
levels 1 through 5 that first appeared in
the landmark paper by Patterson, Gib-
son, and Katz [Patterson et al. 1988], we
present two other RAID organizations,

RAID levels O and 6, that have since
become generally accepted.x For the ben-
efit of those unfamiliar with the original
numerical classification of RAID, we will
use English phrases in preference to the
numerical classifications. It should come
as no surprise to the reader that even the
original authors have been confused
sometimes with regard to the disk array
organization referred to by a particular
RAID level! Figure 3 illustrates the seven
RAID organizations schematically.

3.2.1 Nonredundant (RAID Level O)

A nonredundant disk array, or RAID level
O, has the lowest cost of any RAID orga-
nization because it does not employ re-
dundancy at all. This scheme offers the
best write performance since it does not
need to update redundant information.
Surprisingly, it does not have the best
read performance. Redundancy schemes
that duplicate data, such as mirroring,
can perform better on reads by selec-
tively scheduling requests on the disk
with the shortest expected seek and rota-
tional delays [Bitten and Gray 1988].
Without redundancy, any single disk fail-
ure will result in data loss. Nonredun-
dant disk arrays are widely used in
supercomputing environments where
performance and capacity, rather than
reliability, are the primary concerns.

3.2.2 Mirrored (RAID Level 1)

The traditional solution, called mirroring

or shadowing, uses twice as many disks
as a nonredundant disk array [Bitten and
Gray 1988]. Whenever data is written to
a disk the same data is also written to a
redundant disk, so that there are always
two copies of the information. When data
is read, it can he retrieved from the disk
with the shorter queuing, seek, and rota-
tional delays [Chen et al. 1990]. If a disk
fails, the other copy is used to service
requests. Mirroring is frequently used in

2Strictly speaking, RAID level O IS not a type of
redundant array of inexpensive disks since it stores
no error-correcting codes.

ACM Computing Surveys, Vol 26, No 2, June 1994

RAID ● 153

E3E3E3
Non-Redundant (RAID Level O)

EE3B
Mirrored (RAID Level 1)

Mcmo]y-S[ylc ECC (RAID LCW4 2)

BwIntcrleavcd Parity (R~lD LCVC1 3)

EE3mn!iiii
Block-In{ crleavcd PJriIy (RAID Level 4)

I]lock-In~c!lcavcd Dislribuwd-Parjly [RAID Level 5)

B\ ... Ei23N.... ‘

,., ,, . .. Es
~.\’ ‘.+’

..,’

P+Q Redundancy (RAID Level 6)

Figure 3. RAID levels O through 6. All RAID levels are illustrated at a user capacity of four disks. Disks

with multiple platters indicate block-level striping while disks without multiple platters indicate bit-level
striping. The shaded platters represent redundant information.

database applications where availability
and transaction rate are more important
than storage efficiency [Gray et al. 1990].

3.2.3 Memoiy-Siyle ECC (RAID Level 2)

Memory systems have provided recovery
from failed components with much less

cost than mirroring by using Hamming
codes [Peterson and Weldon 1972]. Ham-
ming codes contain parity for distinct
overlapping subsets of components. In
one version of this scheme, four data
disks require three redundant disks, one
less than mirroring. Since the number of
redundant disks is proportional to the log

ACM Computing Surveys, Vol. 26, No. 2, June 1.994

154 “ Peter M. Chenetal.

of the total number of disks in the sys-
tem, storage efficiency increases as the
number of data disks increases.

If a single component fails, several of
the parity components will have inconsis-
tent values, and the failed component is
the one held in common by each incorrect
subset. The lost information is recovered
by reading the other components in a
subset, including the parity component,
and setting the missing bit to O or 1 to
create the proper parity value for that
subset. Thus, multiple redundant disks
are needed to identify the failed disk, but
only one is needed to recover the lost
information.

Readers unfamiliar with parity can
think of the redundant disk as having
the sum of all the data in the other disks.
When a disk fails, you can subtract all
the data on the good disks from the par-
ity disk; the remaining information must
be the missing information. Parity is
simply this sum modulo two.

3.2.4 Bit-Interleaved Parity (RAID Level 3)

One can improve upon memory-style EGG
disk arrays by noting that, unlike mem-
ory component failures, disk controllers
can easilv identifv which disk has failed.
Thus, on”e can u~e a single parity disk
rather than a set of parity disks to re-
cover lost information.

In a bit-interleaved parity disk array,
data is conceptually interleaved bit-wise
over the data disks, and a single parity
disk is added to tolerate any single disk
failure. Each read request accesses all
data disks, and each write request ac-
cesses all data disks and the parity disk.
Thus, only one request can be serviced at
a time. Because the parity disk contains
only parity and no data, the parity disk
cannot participate on reads, resulting in
slightly lower read performance than for
redundancy schemes that distribute the
parity and data over all disks. Bit-inter-
leaved parity disk arrays are frequently
used in applications that require high
bandwidth but not high 1/0 rates. Also
they are simpler to implement than RAID
Levels 4, 5, and 6.

3.2,5 Block-interleaved Parity (RAID Level 4)

The block-interleaved parity disk array
is similar to the bit-interleaved parity
disk array except that data is interleaved
across disks in blocks of arbitrary size
rather than in bits. The size of these
blocks is called the striping unit [Chen
and Patterson 1990]. Read requests
smaller than the striping unit access only
a single data disk. Write reauests must
upda~e the requested data ‘blocks and
must compute and update the parity
block. For large writes that touch blocks
on all disks, p~rity is easily computed by
exclusive-oring the new data for each
disk. For small write reauests that uw
date only one data disk,’ parity is comp-
uted by noting how the new data differs
from the old data and applying those
differences to the ~aritv block. Small
write requests thu~ re&ire four disk
1/0s: one to write the new data, two to
read the old data and old parity for com-
puting the new parity, and one to write
the new parity. This is referred to as a
read-modify-write procedure. Because a
block-interleaved parity disk array has
only one parity disk, which must be up-
dated on all write operations. the ~aritv
disk can easily become a bottleneck. B~-
cause of this limitation, the block-inter-
leaved distributed-parity disk array is
universally m-eferred over the block-in-
terleaved ~a~ity disk array.

3.2.6 Block-Interleaved Distributed-Parly (RAID
Level 5)

The block-interleaved distributed-~ aritv
disk array eliminates the parity disk bo~-
tleneck present in the block-interleaved
parity disk array by distributing the par-

ity uniformly over all of the disks. An

additional, frequently overlooked advan-

tage to distributing the parity is that it

also distributes data over all of the disks

rather than over all but one. This allows

all disks to participate in servicing read

operations in contrast to redundance. .
schemes with dedicated parity disks in
which the parity disk cannot participate
in servicing read requests. Block-inter-

ACM Computing Surveys, Vol 26, No 2, June 1994

RAID ● 155

leaved distributed-parity disk arrays
have the best small read, large read, and
large write performance of any redun-
dant disk array. Small write requests are
somewhat inefficient compared with re-
dundancy schemes such as mirroring
however, due to the need to perform
read-modify-write operations to update
parity. This is the major performance
weakness of RAID level-5 disk arrays and
has been the subject of intensive re-
search [Menon et al. 1993; Stodolsky and
Gibson 1993].

The exact method used to distribute
parity in block-interleaved distributed-
parity disk arrays can affect perfor-
mance. Figure 4 illustrates the best
parity distribution of those investigated
in [Lee and Katz 1991b], called the left-
symmetric parity distribution. A useful
property of the left-symmetric parity dis-
tribution is that whenever you traverse
the striping units sequentially, you will
access each disk once before accessing
any disk twice. This property reduces disk
conflicts when servicing large requests.

3.2.7 P + Q Redundancy (RAID Level 6,)

Parity is a redundancy code capable of
correcting any single self-identifying
failure. As larger disk arrays are consid-
ered, multiple failures are possible, and
stronger codes are needed [Burkhard and
Menon 1993]. Moreover, when a disk fails
in a parity-protected disk array, recover-
ing the contents of the failed disk re-
quires a successful reading of the con-
tents of all nonfailed disks. As we will
see in Section 3.4, the probability of en-
countering an uncorrectable read error
during recovery can be significant. Thus,
applications with more stringent reliabil-
ity requirements require stronger error-
correcting codes.

One such scheme, called P + Q redun-

dancy, uses Reed-Solomon codes to pro-
tect against up to two disk failures using
the bare minimum of two redundant
disks. The P + Q redundant disk arrays
are structurally very similar to the block-
interleaved distributed-parity disk ar-
rays and operate in much the same

o 1 2

5 6 7

10 11 ;P2 8 9
.,

(Left-SJ mmetnc)

Figure 4. RAID level-5 left-symmetric parity

placement. Each square corresponds to a stripe
unit. Each column of squares corresponds to a disk.
PO computes the parity over stripe units O, 1,2, and
3; PI computes parity over stripe units 4, 5, 6, and

7; etc. Lee and Katz [1991b] show that the left-sym-
metric parity distribution has the best perfor-
mance. Only the minimum repeating pattern is
shown.

manner. In particular, P + Q redundant
disk arrays also perform small write op-
erations using a read-modify-write proce-
dure, except that instead of four disk
accesses per write requests, P + Q re-
dundant disk arrays require six disk ac-
cesses due to the need to update both the
“P and “Q” information.

3.3 Performance and Cost Comparisons

The three primary metrics in the evalua-
tion of disk arrays are reliability, perfor-
mance, and cost. RAID levels O through 6
cover a wide range of tradeoffs among
these metrics. It is important to consider
all three metrics to understand fully the
value and cost of each disk array organi-
zation. In this section, we compare RAID
levels O through 6 based on performance
and cost. The following section examines
reliability y.

3.3.1 Ground Rules and Observations

While there are only three primary
metrics in the evaluation of disk arrays

ACM Computing Surveys, Vol 26, No 2, June 1994

156 “ Peter M. Chen et al.

(reliability, performance, and cost), there
are many different ways to measure each
metric and an even larger number of
ways of using them. For example, should
performance be measured in 1/0s per
second, bytes per second, or response
time? Would a hybrid metric such as 1/0s
per second per dollar be more appropri-
ate? Once a metric is agreed upon, should
we compare systems at the same cost,
the same total user capacity, the same
performance, or the same reliability? The
method one uses depends largely on the
purpose of the comparison and the in-
tended use of the system. In time-sharing
applications, the primary metric may be
user capacity per dollar; in transaction-
processing applications the primary met-
ric may be 1/0s per second per dollar;
and in scientific applications, the pri-
mary metric may be bytes per second per
dollar. In certain heterogeneous systems,
such as file servers, both 1/0s per second
and bytes per second may be important.
In many cases, these metrics may all be
conditioned on meeting a reliability
threshold.

Most large secondary storage systems,
and disk arrays in particular, are
throughput oriented. That is, generally
we are more concerned with the aggre-
gate throughput of the system than, for
example, its response time on individual
requests (as long as requests are satis-
fied within a specified time limit). Such
a bias has a sound technical basis: as
techniques such as asynchronous 1/0,
prefetching, read caching, and write
buffering become more widely used, fast
response time depends on sustaining a
high throughput.

In throughput-oriented systems, per-
formance can potentially increase Iin-
early as additional components are
added; if one disk provides 30 1/0s per
second, 2 should provide 60 1/0s per
second. Thus, in comparing the perfor-
mance of disk arrays, we will normalize
the performance of the system by its cost.
In other words we will use performance
metrics such as 1/0s per second per dol-
lar rather than the absolute number of
1/0s per second.

Even after the metrics are agreed upon,
one must decide whether to compare sys-
tems of equivalent capacity, cost, or some
other metric. We chose to compare sys-
tems of equiualen t file capacity where

file capacity is the amount of information
the file system can store on the device
and excludes the storage used for redun-
dancy. Comparing systems with the same
file capacity makes it easy to choose
equivalent workloads for two different
redundancy schemes. Were we to com-
pare systems with different file capaci-
ties, we would be confronted with tough
choices such as how a workload on a
system with user capacity X maps onto a
system with user capacity 2X.

Finally, there is currently much confu-
sion in comparisons of RAID levels 1
through 5. The confusion arises because
a RAID level sometimes specifies not a
specific implementation of a system but
rather its configuration and use. For ex-
ample, a RAID level-5 disk array (block-
interleaved distributed parity) with a

parity group size of two is comparable to
RAID level 1 (mirroring) with the excep-
tion that in a mirrored disk array, cer-
tain disk-scheduling and data layout
optimizations can be performed that,

generally, are not implemented for RAID
level-5 disk arrays [Hsiao and DeWitt
1990; Orji and Solworth 1993]. Analo-

gously, a RAID level-5 disk array can be
configured to operate equivalently to a
RAID level-3 disk array by choosing a
unit of data striping such that the small-
est unit of array access always accesses a
full parity stripe of data. In other words,
RAID level-l and RAID level-3 disk ar-
rays can be viewed as a subclass of RAID
level-5 disk arrays. Since RAID level-2
and RAID level-4 disk arrays are, practi-
cally speaking, in all ways inferior to
RAID level-5 disk arrays, the problem of
selecting among RAID levels 1 through 5
is a subset of the more general problem
of choosing an appropriate parity group
size and striping unit size for RAID level-
5 disk arrays. A parity group size close to
two may indicate the use of RAID level-1
disk arrays; a striping unit much smaller
than the size of an average request may

ACM Computmg Surveys, Vol. 26, No 2, June 1994

RAID ● 157

Table 3. Throughput per Dollar Relative to RAID Level 0.

Small Read Small Write Large Read Large Write Storage Efficiency

RAID level O 1 1 1 1 1

RAID level 1 I 1 1/2 1 1/2 1/2

RAID level 3 l/G l/G (G- 1)/G (G-1)/G (G-1)/G

RAID level 5 I 1 max(l/G, I/4) 1 (G-lj/G (G-1)/G

RAID level 6 1 max(l/G,l/6) 1 (G-2)/G (G-2)/G

This table compares the throughputs of various redundancy schemes for four types of 1/0 requests. Small
here refers to 1/0 requests of one striping unit; large refers to 1/0 requests of one full stripe (one stripe

unit from each disk in an error correction group). G refers to the number of disks in an error correction
group, In all cases, the higher the number the better. The entries in this table account for the major

performance effects but not some of the second-order effects. For instance, since RAID level 1 stores two
copies of the data, a common optimization is to read dynamically the disk whose positioning time to the

data is smaller.

indicate the use of a RAID level-3 disk
array.

3.3.2 Comparisons

Table 3 tabulates the maximum through-
put per dollar relative to RAID level O for
RAID levels O, 1, 3, 5, and 6. The cost of
each system is assumed to be propor-
tional to the total number of disks in the
disk array. Thus, the table illustrates
that given equivalent cost RAID level-O
and RAID level- 1 systems, the RAID
level-l system can sustain half the num-
ber of small writes per second that a
RAID level-O system can sustain. Equiva-
lently, we can say that the cost of small
writes is twice as expensive in a RAID
level-l system as in a RAID level-O sys-
tem. In addition to performance, the table
shows the storage efficiency of each disk
array organization. The storage effi-
ciency is approximately inverse to the
cost of each unit of user capacity relative
to a RAID level-O system. For the above
disk array organizations, the storage effi-
ciency is equal to the performance/cost
metric for large writes.

Figure 5 graphs the performance/cost
metrics from Table 3 for RAID levels 1, 3,
5, and 6 over a range of parity group
sizes. The performance/cost of RAID
level-l systems is equivalent to the per-
formance/cost of RAID level-5 systems

when the parity group size is equal to
two. The performance/cost of RAID
level-3 systems is always less than or
equal to the performance/cost of RAID
level-5 systems. This is expected given
that a RAID level-3 system is a subclass
of RAID level-5 systems derived by re-
stricting the striping unit size such that
all requests access exactly a parity stripe
of data. Since the configuration of RAID
level-5 systems is not subject to such a
restriction, the performance/cost of
RAID level-5 systems can never be less
than that of an equivalent RAID level-3
system. It is important to stress that
these performance\cost observations ap-
ply only to the abstract models of disk
arrays for which we have formulated per-
formance/cost metrics. In reality, a spe-
cific implementation of a RAID level-3
system can have better performance/cost
than a specific implementation of a RAID
level-5 system.

As previously mentioned, the question
of which RAID level to use is often better
expressed as more general configuration
questions concerning the size of the par-
ity group and striping unit. If a parity
group size of two is indicated, then mir-
roring is desirable. If a very small strip-
ing unit is indicated then a RAID level-3
system may be sufficient. To aid the
reader in evaluating such decisions, Fig-
ure 6 plots the four performance/cost

ACM Computing Surveys, Vol 26, No. 2, June 1994

158 . Peter M. Chen et al.

Small Reads

‘“0 r

05

L

AID 3

() o
0 5 10 15 ?0

Group SI/c

Large Reads
All) 5&6

7

R ID

“RAID3

o 5 1() 15 20
Group SI~c

Small Writes

1.0,

RAID 1

\

RAID 3,5 & 6

0 5 10 Is 20

GIm]p SI)C

Large }Vrites

RAID 3&5

F

RAID 1

RAID6

5 10 15 20
GIOUp Size

Figure 5. Throughput per dollar relatlve to RAID level 0, RAID level-l performance is approximately

equal to RAID level-5 performance with a group size of two. Note that for small writes, RAID levels 3, 5,
and 6 are equally cost effective at small group sizes, but as group size increases, RAID levels 5 and 6

become better alternatives.

metrics from Table 3 on the same graph
for each of the RAID levels 3, 5, and 6.
This makes the performance/cost trade-
offs explicit in choosing an appropriate
parity group size. Section 4.4 addresses
how to choose the unit of striping.

3.4 Reliability

Reliability is as important a metric to
many 1/0 systems as performance and
cost, and it is perhaps the main reason
for the popularity of redundant disk ar-
rays, This section starts by reviewing the
basic reliability provided by a block-in-
terleaved parity disk array and then lists
three factors that can undermine the po-
tential reliability of disk arrays.

3.4.1 Basic Reliability

Redundancy in disk arrays is motivated
by the need to overcome disk failures.
When only independent disk failures are
considered, a simple parity scheme works
admirably. Patterson et al. [1988] derive
the mean time between failures for a
RAID level 5 to be

MTTF(disk)2

NX (G – 1) x MTTR(disk) ‘

where MTTF(disk) is the mean-time-
to-failure (MTTF) of a single disk,
MTTR(disk) is the mean-time-to-repair
(MTTR) of a single disk, N is the total

ACM Computing Surveys, Vol 26, No 2, June 1994

RAID ● 159

RAID Level 3

cLqe kCdS &! \~r,lc<

Small Reads & Wmcs

() 5 10 15 20
Group Si~c

1

o

RAID Level 6

S]IMII & Lame Reads

RAID Level 5

Small & L:IIge Reads

cL:irgc Wnlc,

Small Wnks

5 10 15 20
Group Si/.c

o.o~
5 10 15 20

Group Size

Figure 6. Throughput per dollar relative to RAID level O. The graphs illustrate the tradeoff in perfor-
mance\cost versus group size for each specified R41D level. Note that in this comparison, mirroring (RAID
level 1) is the same as RAID level 5 with a group size of two.

number of disks in the disk array, and G
is the parity group size. For illustration
purposes, let us assume we have 100
disks that each had a mean time to fail-
ure of 200,000 hours and a mean time to
repair of one hour. If we organized these
100 disks into parity groups of average
size 16, then the mean time to failure of
the system would be an astounding 3000
years. Mean times to failure of this mag-
nitude lower the chances of failure over
any given period of time.

For a disk array with two redundant
disk per parity group, such as P + Q re-
dundancy, the mean time to failure is

iWTTF3 (disk)

N x (G – 1) x (G – 2) x MTTR2(disk)

Using the same values for our reliability
parameters, this implies an astronomi-
cally large mean time to failure of 38
million years.

This is an idealistic picture, but it gives
us an idea of the potential reliability af-
forded by disk arrays. The rest of this
section takes a more realistic look at the
reliability of block-interleaved disk ar-
rays by considering factors such as sys-
tem crashes, uncorrectable bit-errors, and
correlated disk failures that can dramati-
cally affect the reliability of disk arrays.

3.4.2 System Crashes and Parity Inconsistency

In this section, the term system crash

refers to any event such as a power
failure, operator error, hardware

ACM Computmg Surveys, Vol. 262 No. 2, June 1994

160 “ Peter M. Chen et al.

breakdown, or software crash that can
interrupt an 1/0 operation to a disk ar-
ray. Such crashes can interrupt write op-
erations, resulting in states where the
data is updated and the parity is not, or
visa versa. In either case, the parity is
inconsistent and cannot be used in the
event of a disk failure. Techniques such
as redundant hardware and power sup-
plies can be applied to make such crashes
less frequent [Menon and Cartney 1993],
but no technique can prevent systems
crashes 100% of the time.

System crashes can cause parity incon-
sistencies in both bit-interleaved and
block-interleaved disk arrays, but the
problem is of practical concern only in
block-interleaved disk arrays. This is be-
cause in bit-interleaved disk arrays the
inconsistent parity can only affect the
data that is currently being written. If
writes do not have to be atomic, applica-
tions cannot assume either that the write
during a system crash completed or did
not complete, and thus it is generally
permissible for the bit-interleaved disk
array to store arbitrary data on the up-
dated sectors. In a block-interleaved disk
array, however, an interrupted write op-
eration can affect the ~arit~ of other data
blocks in that stripe ;hat ;ere not being
written. Thus, for reliability purposes,
svstem crashes in block-interleaved disk
a&ays are similar to disk failures in that
they may result in the loss of the correct
parity for stripes that were being modi-
fied during the crash.

In actuality, system crashes can be
much worse than disk failures for two
reasons. First, they may occur more fre-
quently than disk failures. Second, a sys-
tem crash in disk arrays using P + Q
redundancy is analogous to a double disk
failure because both the “P” and “Q” in-
formation is made inconsistent. To avoid
the loss of parity on system crashes, in-
formation sufficient to recover the parity
must be logged to nonvolatile storage be-
fore executing each write operation. The
information need only be saved until
the corresponding write completes. Hard-
ware implementations of RAID systems
can implement such logging efficiently

using nonvolatile RAM. In software im-
plementations that do not have access to
fast nonvolatile storage, it is generally
not possible to protect against system
crashes without significantly sacrificing
performance.

3.4.3 Uncorrectable Bit Errors

Although modern disks are highly reli-
able devices that can withstand sig-
nificant amounts of abuse, they occa-
sionally fail to read or write small bits of
data. ~urrently, most disks cite uncor-
rectable bit error rates of one error in

10 lJ bits read. Unfortunately. the exact“,

interpretation of what is meant by an
uncorrectable bit error is unclear. For
example, does the act of reading disks
actually generate errors, or do the errors
occur during writes and become evident
during reads?

Generally, disk manufactures agree
that reading a disk is very unlikely to
cause permanent errors. Most uncorrect-
able errors are generated because data is
incorrectly writ;en or gradually damaged
as the magnetic media ages. These errors
are detected only when we attempt to
read the data. Our interpretation of un-
correctable bit error rates is that they
rem-esent the rate at which errors are
de~ected during reads from the disk dur-
ing the normal operation of the disk drive.
It is important to stress that there is no
generally agreed upon interpretation of
bit error rates.

The primary ramification of an uncor-
rectable bit error is felt when a disk fails
and the contents of the failed disk must
be reconstructed by reading data from
the nonfailed disks. For example, the re-
construction of a failed disk in a 100 GB

disk array requires the successful read-
ing of approximately 200 million sectors
of information. A bit error rate of one in
1014 bits implies that one 512 byte sector
in 24 billion sectors cannot be correctly
read. Thus, if we assume that the proba-
bility of reading sectors is independent of
each other, the probability of reading all
200 million sectors successfully is ap-
proximately (1 – 1/(2.4 X 1010)) A (2.0

ACM Computmg Surveys, Vol 26. No. 2, .June 1994

x 108) = 99.29%. This means that on av-

erage, 0.8% of disk failures would result
in data loss due to an uncorrectable bit
error.

The above example indicates that un-
recoverable bit errors can be a significant
factor in designing large, highly reliable
disk arrays. This conclusion is heavily
dependent on our particular interpreta-
tion of what is meant by an unrecov-
erable bit error and the guaranteed
unrecoverable bit error rates as supplied
by the disk manufactures; actual error
rates may be much better.

One approach that can be used with or
without redundancy is to try to protect
against bit errors by predicting when a
disk is about to fail. VAXsimPLUS, a
product from Digital Equipment Corpo-
ration, monitors the warnings given by
disks and notifies an operator when it
feels the disk is about to fail. Such pre-
dictions can significantly lower incident
of data loss [Emlich and Polich 1989;
Malhotra and Trivedi 1993].

3.4.4 Correlated Disk Failures

The simplest model of reliability of disk
arrays [Patterson et al. 1988] assumes
that all disk failures are independent
when calculating mean time to data loss.
This resulted in very high mean time to
data loss estimates, up to millions of
years. In reality, common environmental
and manufacturing factors can cause cor-
related disk failures frequently. For ex-
ample, an earthquake might sharply
increase the failure rate for all disks
in a disk array for a short period of time.
More commonly, power surges, power
failures, and simply the act of powering
disks on and off can place simultaneous
stress on the electrical components of all
affected disks. Disks also share common
support hardware; when this hardware
fails, it can lead to multiple, simultane-
ous disk failures.

Aside from environmental factors, the
disks themselves have certain correlated
failure modes built into them. For exam-
ple, disks are generally more likely to fail
either very early or very late in their

lifetimes. Early failures are caused fre-
quently by transient defects which may
not have been detected during the manu-
facturer’s burn-in process; late failures
occur when a disk wears out. A system-
atic manufacturing defect can produce
also bad batches of disks that can fail
close together in time. Correlated disk
failures greatly reduce the reliability of
disk arrays by making it much more
likely that an initial disk failure will be
closely followed by additional disk fail-
ures before the failed disk can be recon-
structed.

3.4.5 Reliability Revisited

The previous sections have described how
system crashes, uncorrectable bit errors,
and correlated disk failures can decrease
the reliability of redundant disk arrays.
In this section, we will calculate mean-
time-to-data-loss statistics after incorpo-
rating these factors.

The new failure modes imply that there
are now three relatively common ways to
lose data in a block-interleaved parity-
protected disk array:

e

●

●

double disk failure,

system crash followed by a disk failure,
and

disk failure followed bv an uncorrect-
able bit error during reconstruction.

As mentioned above, a system crash
followed by a disk failure can be pro-
tected against in most hardware disk ar-
ray implementations with the help of
nonvolatile storage, but such protection
is unlikely in software disk arrays. The
above three failure modes are the hard-
est failure combinations, in that we are
currently unaware of any techniques
to protect against them without signifi-
cantly degrading performance. To con-
struct a simple model of correlated disk
failures, we will assume that each suc-
cessive disk failure is 10 times more

likely than the previous failure (until the
failed disk has been reconstructed).
Table 4 tabulates values of the reliability

ACM Computing Surveys, Vol 26, No. 2, June 1994

162 * Peter M. Chen et al.

Table 4. Reliablilty Parameters

Total User CapacNy

Disk Size

Sector Size

Bit Error RaIc (BER)

p(dl\k)

The probability of reading

all sectors on a disk
(Dcnved from disk SIX,

sector si~e, and BER.)

Parily Group SIZC

MTTF(disk)

M’ITF(disk2)

MlTF(dtsk3)

MITR(disk)

M’ITF(sys)

MITR(sys)

100 dtsks (500 GB)

5 GB

512 byms

1 in 10A14 b{~

1 m 2.4 IOAIO scclors

99.96%

16 disks

200,000 hours

20,000 hours

2,(XKI hours

1 hour

1 month

1 hour

This table lists parameters used for reliabdity cal-
culations m this section.

parameters we will use for calculating
numeric reliability estimates in this sec-
tion. Note that the reliability estimates
will be given per a constant user capacity
of 100 disks, consisting of independent,
16-disk parity groups.

Table 5, which tabulates reliability
metrics for RAID level-5 disk arrays,
shows that the frequency of the three
failure combinations are within an order
of magnitude of each other. This means
that none of the three failure modes can
be ignored in determining reliability. This
makes it difficult to improve the overall
reliability of the system without improv-
ing the reliability y of several components
of the system; a more reliable disk will
greatly reduce the frequency of double
disk failures, but its protection against
the other two failure combinations is less
pronounced. Frequencies of both system
crashes and bit error rates also must be
reduced before significant improvements
in overall system reliability can be
achieved. Also, note the deceptively reas-
suring MTTDL numbers. Even with a

MTTDL of 285 years, there is a 3.4%
chance of losing data in the first 10 years.

Table 6 tabulates the reliability met-
rics for P + Q redundant disk arrays.
As can be seen, system crashes are the
Achilles’s heel of P + Q redundancy
schemes. Since system crashes invalidate
both the P and Q information, their effect
is similar to a double disk failure. Thus,
unless the system provides protection
against system crashes, as is assumed in
the calculation of the reliability for hard-
ware RAID systems, P + Q redundancy
does not provide a significant advantage
over parity-protected disk arrays. In gen-
eral, P + Q redundancy is most useful
for protecting against unrecoverable bit
errors that occur during reconstruction
and against multiple correlated disk fail-
ures.

3.4.6 Summary and Conclusions

This section has examined the reliability
of block-interleaved redundant disk ar-
rays when factors other than indepen-
dent disk failures are taken into account.
We see that system crashes and unrecov-
erable bit errors can significantly reduce
the reliability of block-interleaved parity-
protected disk arrays. We have shown
that P + Q redundant disk arrays are
very effective in protecting against both
double disk failures and unrecoverable
bit errors but are susceptible to system
crashes. In order to realize the full relia-
bility advantages of P + Q redundant
disk arrays, nonvolatile storage must be
used to protect against system crashes.

Numeric reliability calculations serve
as useful guidelines and bounds for the
actual reliability of disk arravs. How-.
ever, it is infeasible to compare the re-

liability of real system based on such
numbers. Frequently, reliability calcula-
tions ignore important implementation-
specific factors that are difficult to quan-
tify, such as the reliability of software
components. What is useful to know,
however, and what we have presented
here, are the types of common failures
that a disk array can tolerate, how they
limit the reliability of the system, and

ACM Computmg Surveys, Vol. 26, No 2, June 1994

RAID ● 163

Table 5. Failure Characteristics for RAID Level-5 Disk Arrays.

Probability of

MTTDL NITTDL Data Loss over

10 Year Period

Double Disk Failure MTTF (disk) x MTTF (disk2) 285 yrs. 3.4%
Nx (G- 1) xh4TTR(disk)

Sys Crash + Disk Failure
MTTF (sys) x MTTF (disk)

154 yrs. 6.3%
N X kf~~/? (SYS)

Disk Failure + Bit Error IWTF (disk) 36 yrs. 24 .4%

Nx (1- (p(disk))G-’)
#

Software RAID (harmonic sum of above) 26 yrs. 31.6%

Hardware RAID (NVRAM) ::-:;:: ;:;;::g 32 yrs. 26.8%

MTTDL is the mean time to data loss. The 10-year failure rate is the percent chance of data loss in a
10-year period, For numeric calculations, the parity group size, G, is equal to 16, and the user data
capacity is equal to 100 data disks. Note that the total number of disks in the system, N, is equal to the
number of data disks times G/(G – 1).

Table 6. Failure Characteristics for a P + Q disk array.

Triple Disk
Failure

Sys Crash+
Disk Failure

Double
Disk Failure
+ Bit Error

software
RAID

Hardware
RAID
(NVRAM)

Probability
of Data

MTfDL MTTDL Loss over
10 Year
Period

MT7F (disk) X MT77F (d1sk2) X MTTF(disk3))
38052 yrs. 0.03%

Nx (G - 1) x (G -2) xMTTR2(disk)

MTTF (SYS) X MTTF (duk)

N X M7TR (S]S)
144 yrs. 7.7%

M’f’TF (disk) x IUTTF (disk2))

Nx(G-l) x(l-(l-p (disk))) ‘6-2)) x MTTR (disk)
47697 yrs. 0.029??

(harmonic sum of above) 143 yrs. 6.8%

(harmonic sum excluding sys crmh+disk failure) 21166 yrs. 0.05%

MTTDL is the mean time to data loss. The 10-year failure rate is the percent chance of data loss in a
10-year period. For numeric calculations, the parity group size, G, is equal to 16, and the user data
capacity is equal to 100 data disks. Note that the total number of disks in the system, N, is equal to the
number of data disks times G/(G – 2).

ACM Computmg Surveys, Vol. 26, No. 2, June 1994

164 ● Peter M. Chen et al.

thus its approximate reliability in com-
parison to other disk array organizations
of similar complexity.

3.5 Implementation Considerations

Although the operation of block-inter-
leaved redundant disk arrays is concep-
tually simple, a disk array implementer
must address many practical considera-
tions for the system to function correctly
and reliably at an acceptable level of per-
formance. One problem is that the neces-
sary state information for a disk array
consists of more than just the data and
parity stored on the disks. Information
such as which disks are failed, how much
of a failed disk has been reconstructed,
and which sectors are currently being
updated must be accurately maintained
in the face of system crashes. We will
refer to such state information that is
neither user data nor parity as metastate

information. Another problem, addressed
in Section 3.5.4, is that multiple disks
are usually connected to the host com-
puter via a common bus or string.

3.5.1 Avoiding Stale Data

The only piece of metastate information
that must be maintained in redundant
disk arrays is the validity of each sector
of data and parity in a disk array. The
following restrictions must be observed
in maintaining this information.

0

*

When a disk fails, the logical sectors
corresponding to the failed disk must
be marked invalid before any request
that would normally access to the failed
disk can be attempted. This invalid
mark prevents users from reading cor-
rupted data on the failed disk.

When an invalid logical sector is recon-
structed to a spa~e disk, the logical
sector must be marked ualid before
any write request that would normally
write to the failed disk can be serviced.
This ensures that ensuing writes up-
date the reconstructed data on the
spare disk.

Both restrictions are needed to ensure
that users do not receive stale data from
the disk array. Without the first restric-
tion, it would be possible for users to
read stale data from a disk that is con-
sidered to have failed but works inter-
mittently. Without the second restriction,
successive write operations would fail to
update the newly reconstructed sector,
resulting in stale data. The valid/
invalid state information can be main-
tained as a bit-vector either on a sepa-
rate device or by reserving a small
amount of storage on the disks currently
configured into the disk array. If one
keeps track of which disks are failed/op-
erational, one needs only to keep a bit-
vector for the failed disks. Generally, it is
more convenient to maintain the
valid/invalid state information on a per
striping unit rather than a per sector
basis since most implementations will
tend to reconstruct an entire striping unit
of data at a time rather than a single
sector. Because disk failures are rela-
tively rare events and large groups of
striping units can be invalidated at a
time, updating the valid/invalid metas-
tate information to stable storage does
not present a significant performance
overhead.

3.5.2 Regenerating Parity after a System Crash

System crashes can result in inconsistent
parity by interrupting write operations.
Thus, unless it is known which parity
sectors were being updated, all parity
sectors must be regenerated when ever a
disk array comes up from a system crash.
This is an expensive operation that re-
quires scanning the contents of the en-
tire disk array. To avoid this overhead,
information concerning the consistent\
inconsistent state of each parity sector
must be logged to stable storage. The
following restriction must be observed.

Before servicing any write request, the
corresponding parity sectors must be
marked inconsistent.

When bringing a system up from a sys-
tem crash, all inconsistent parity sec-
tors must be regenerated.

ACM Computmg Surveys, Vol. 26, No, 2, June 1994

RAID ● 165

Note that because regenerating a con-
sistent parity sector does no harm, it is
not absolutely necessary to mark a parity
sector as consistent. To avoid having
to regenerate a large number of parity
sectors after each crash, however, it is
clearly desirable to mark parity sectors
periodically, as consistent.

Unlike updating valid/invalid infor-
mation, the updating of consistent/in-
consistent slate information is a poten-
tial performance problem in software
RAID systems, which usually do not have
access to fast. nonvolatile storage. A sim-
plistic implementation would ~equire a
disk write to mark a parity sector as
inconsistent before each write operation
and a corresponding disk write to mark
the parity sector as consistent after each
write operation. A more palatable solu-
tion is to maintain a most recently used
pool that keeps track of a fixed number
of inconsistent parity sectors on stable
storage. By keeping a copy of the pool in
main memory, one can avoid accessing
stable storage to mark parity sectors that
are already marked as inconsistent. By
varying the size of the pool, one can
tradeoff the hit rate of the pool against
the amount of parity information that
needs to be regenerated when recovering
from a system crash.

The above method should work effi-
ciently for requests that exhibit good lo-
cality of reference. If the disk array must
service a large number of random write
requests, as in transaction-processing en-
vironments, we recommend incorporat-
ing a group commit mechanism s: that
a large number of parity sectors can be
marked inconsistent with a sinde access
to stable storage. This so~ves the
throughput problem but results in higher
latencies for random write reauests since
the parity sectors must be ma~ked incon-
sistent before the writes can proceed.

3.5.3 Operating with a Failed Disk

A system crash in a block-interleaved
redundant disk array is similar to a disk
failure in that it can result in the loss of
parity information. This means that a

disk array operating with a failed disk
can potentially lose data in the event of a
system crash. Because system crashes are
simificantlv more common in most svs-
tevms than ~isk failures, operating wit~ a
failed disk can be risky.

While operating with a failed disk, a
user must perform some form of logging
on every write operation to prevent the
loss of information in the event of a
system crash. We describe two elegant
methods to perform this logging. The first
method. called demand reconstruction. is

the easiest and most efficient but ~e-
quires stand-by spare disks. With de-
mand reconstruction, accesses to a parity
stripe with an invalid sector trigger
reconstruction of the appropriate data
immediately onto a spare disk. Write op-
erations. thus. never deal with invalid
sectors created by disk failures. A back-
ground process scans the entire disk ar-
ray to ensure that all the contents of the
failed disk are eventually reconstructed
within an acceptable tim~ period.

The second method, called parity spar-
ing [Chandy and Reddy 1993], can be
applied to systems without stand-by
spares but requires additional metastate
information. Before servicirw a write re-
quest that would access a ~arity stripe
with an invalid sector, the invalid sector
is reconstructed and relocated to over-
write its corresponding parity sector.
Then the sector is marked as relocated.
Since the corresponding parity stripe no
longer has parity, a system crash can
only affect the data being written. When
the failed disk is eventually replaced, (1)
the relocated sector is copied to the spare
disk, (2) the parity is regenerated, and
(3) the sector is no longer marked as
relocated.

3.5.4 Orthogonal RAID

TO this point, we have ignored the issue
of how to connect disks to the host com-
puter. In fact, how one does this can
drastically affect performance and relia-
bility. Most computers connect multiple
disks via some smaller number of strings.
Thus, a string failure causes multiple,

ACM Computing Surveys, Vol. 26, No 2, June 1994

166 “ Peter M. Chen et al.

0,>11 <1.2

.,”,0

f“7gj3*SI,,,)g
COnlloll.r

Op,m, 1

Figure 7. Orthogonal RAID. This figure presents
two options of how to orgamze error correction
groups in the presence of shared resources, such as
a string controller, Option 1 groups four disks on
the same string into an error correction group;
Option 2 groups one disk from each string into a
group. Option 2 is preferred over Option 1 because
the failure of a string controller will only render
one disk from each group inaccessible.

simultaneous disk failures. If not prop-
erly designed, these multiple failures can
cause data to become inaccessible.

For example, consider the 16-disk ar-
ray in Figure 7 and two options of how
to organize multiple, error correction
groups. Option 1 combines each string of
four disks into a single error correction
group. Option 2 combines one disk on
each string into a single error correction
group. Unfortunately for Option 1, if a
string fails, all four disks of an error
correction group are inaccessible. On the
other hand, Option 2 loses one disk from
each of the four error correction groups
and still allows access to all data. This
technique of organizing error correction
groups orthogonally to common hard-
ware (such as a string) is called orthogo-

nal RAID [Schulze et al. 1989; Ng 1994].
Orthogonal RAID has the added benefit
of minimizing string conflicts when mul-
tiple disks from a group transfer data
simultaneously.

4. ADVANCED TOPICS

This section discusses advanced topics
in the design of redundant disk arrays.
Many of the techniques are independent
of each other, allowing designers to mix
and match techniques.

4.1 Improving Small Write Performance for
RAID Level 5

The major performance problem with
RAID level-5 disk arrays is the high
overhead for small writes. As described
in Section 3.2, each small write generates
four separate disk 1/0s, two to read the
old data and old parity and two to write
the new data and new parity. This in-
creases the response time of writes by
approximately a factor of two and de-
creases throughput by approximately a
factor of four. In contrast, mirrored disk
arrays, which generate only two disk
1/0s per small write, experience very
little increase in response time and only
a factor-of-two decrease in through-
put. These performance penalties of RAID
level 5 relative to nonredundant and mir-
rored disk arrays are prohibitive in ap-
plications such as transaction processing
that generate many small writes.

This section describes three techniques
for improving the performance of small
writes in RAID level-5 disk arrays: buf-
fering and caching, floating parity, and
parity logging.

4.1.1 Buffering and Caching

Buffering and caching, two optimizations
commonly used in 1/0 systems, can
be particularly effective in disk arrays.
This section describes how these opti-
mization can work to minimize the per-
formance degradations of small writes in
a RAID level 5.

Write buffering, also called asyn-

chronous writes, acknowledges a user’s
write before the write goes to disk. This
technique reduces the response time seen
by the user under low and moderate load.
Since the response time no longer de-
pends on the disk system, RAID level 5
can deliver the same response time as

ACM Computing Surveys. Vol 26, No 2, June 1994

RAID ● 167

any other disk system. If system crashes
are a significant problem, nonvolatile
memory is necessary to prevent loss of
data that are buffered but not yet com-
mitted. This technique may also improve
throughput in two ways: (1) by giving
future updates the opportunity to over-
write previous updates, thus eliminating
the need to write the first update [Menon
and Cortney 1993], and (2) by lengthen-
ing the queue of requests seen by a disk
scheduler and allowing more efficient
scheduling [Seltzer et al 19901.

Barring these overwrites, however, this
technique does nothing to improve
throughput. So under high load, the write
buffer space will fill more quickly than it
empties, and response time of a RAID

level 5 will still be four times worse than
a RAID level O.

An extension of write buffering is to
group sequential writes together. This
technique can make writes to all types of
disk systems faster, but it has a particu-
lar appeal to RAID level-5 disk arrays.
By writing larger units, small writes can
be turned into full stripe writes, thus
eliminating altogether the Achilles heel
of RAID level-5 workloads [Rosenblum
and Ousterhout 1991; Menon and Court-
ney 1993].

Read caching is normally used in disk
systems to improve the response time
and throughput when reading data. In a
RAID level-5 disk array, however, it can
serve a secondary pm-pose. If the old data
required for computing the new parity is
in the cache, read caching reduces the
number of disk accesses required for
small writes from four to three. This is
very likely, for example, in transaction-
processing systems where records are
frequently updated by reading the old
value, changing it, and writing back the
new value to the same location.

Also, by caching recently written par-
ity, the read of the old parity can some-
times be eliminated, further reducing the
number of disk accesses for small writes
from three to two. Because parity is
computed over many logically consecu-
tive disk sectors, the caching of parity
exploits both temporal and spatial local-

ity. This is in contrast to the caching of
data which, for the purposes of reducing
disk operations on small writes, relies on
the assumption that recently read sec-
tors are likely to be written rather than
on the principle of spatial locality. Of
course, caching parity blocks reduces the
space available for caching data, which
may increase the number of data misses.

4.1.2 Floating Parity

Menon et al. [1993] proposed a variation
on the organization of parity in RAID
level-5 disk array, called floating parity,
that shortens the read-modify-write of
parity updated by small, random writes
to little more than a single disk access
time on average. Floating parity clusters

parity into cylinders, each containing a
track of free blocks. Whenever a parity
block needs to be updated, the new par-
ity block can be written on the rotation-
ally nearest unallocated block following
the old parity block. Menon et al. show
that for disks with 16 tracks per cylin-
der, the nearest unallocated block imme-
diately follows the parity block being read
65% of the time, and the average number
of blocks that must be skipped to get to
the nearest unallocated block is small,
between 0.7 and 0.8. Thus, the writing of
the new parity block can usually occur
immediately after the old parity block is
read, making the entire read-modify-
write access only about a millisecond
longer than a read access.

To implement floating parity effi-
ciently, directories for the locations of
unallocated blocks and parity blocks must
be stored in primary memory. These ta-
bles are about 1 MB in size for each disk
array containing four to ten 500 MB
disks. To exploit unallocated blocks im-
mediately following the parity data being
read, the data must be modified and a
disk head switched to the track contain-
ing the unallocated block before the disk
rotates though an interjector gap. Be-
cause of these constraints, and because
only a disk controller can have exact
knowledge of its geometry, floating par-
ity is most likely to be implemented in
the disk controller.

ACM Computing Surveys, Vol. 26, No. 2, June 1994

168 “ Peter M. Chen et al

Menon et al. [1993] also propose float-
ing data as well as parity. This makes
the overhead for small writes in RAID
level-5 disk arrays comparable to mirror-
ing. The main disadvantage of floating
data is that logically sequential data may
end up discontinuous on disk. Also, float-
ing data requires much more free disk
space than floating only the parity since
there are many more data blocks than
parity blocks.

4.1.3 Parity Logging

Stodolsky and Gibson [1993] propose an
approach, called parity logging, to re-
duce the penalty of small writes in RAID
level-5 disk arravs ~Bhide and Dias 19921.
Parity logging ~educes the overhead fo~
small writes by delaying the read of the
old parity and the write of the new par-
ity. Instead of updating the parity imme-
diately, an update image, which is the
difference between the old and new par-
ity, is temporarily written to a log. Delay-
ing the update allows the parity to be
grouped together in large contiguous
blocks that can be updated more effi-
ciently.

This delay takes place in two parts.
First, the parity update image is stored
temporarily in nonvolatile memory. When
this memory, which could be a few tens
of KB, fills up, the parity update image is
written to a log region on disk. When the
log fills up, the parity update image is

read into memory and added to the old

parity. The resulting new parity is then
written to disk. Although this scheme
transfers more data to and from disk, the
transfers are in much larger units and
are hence more efficient; large sequential
disk accesses are an order of magnitude

more efficient than small random ac-

cesses (Section 2.1). Parity logging re-

duces the small write overhead from four

disk accesses to a little more than two

disk accesses, the same overhead in-

curred by mirrored disk arrays. The costs

of parity logging are the memory used for

temporarily storing update images, the

extra disk space used for the log of up-

date images, and the additional memory

used when applying the parity update
image to the old parity. This technique
can be applied also to the second copy of
data in mirrored disk arrays to reduce
the cost of writes in mirrored disk arrays
from two to a little more than one di~k
access [Orji and Solworth 1993].

4.2 Declustered Parity

Many applications, notably database and
transaction processing, require both high
throughput and high data availability
from their storage systems. The most de-
manding of these applications requires
continuous operation—the ability to sat-
isfy requests for data in the presence of
disk failures while simultaneously recon-.
strutting the contents of failed disks onto
replacement disks. It is unacceptable to
fulfill this requirement with arbitrarily
degraded performance, especially in long-
lived real-time applications such as video
service; customers are unlikely to toler-
ate movies played at a slower speed or
having their viewing terminated prema-
turely.

Unfortunately, disk failures cause
large performance degradations in stan-
dard RAID Ievel-5 disk arrays. In the
worst case, a workload consisting en-
tirelv of small reads will double the effec-.
tive load at nonfailed disks due to extra
disk accesses needed to reconstruct data
for reads to the failed disk. The addi-
tional disk accesses needed for complete
reconstruction of the failed disk increase
the load even further.

In storage svstems that stri~e data
u. .

across several RAIDs, the average in-
crease in load is significantly less than in
RAIDs with one large parity group, but
the RAID with the failed disk still expe-

riences a 100% increase in load in the

worst case. The failed RAID creates a hot

spot that degrades the performance of
the entire system. The basic problem in
these large systems is that although
inter-RAID striping distributes load uni-
formly when no disk is failed, it nonuni-
formly distributes the increased load that
results from a failed disk; the small set of
disks in the same parity group as the

ACM C!omputmg Surveys, Vol 26, No 2, June 1994

RAID ● 169

Igo

g2

g4

g6

Disk O

I

go

g2

g4

g6

Disk O

cgo

g2

g4

g6

[[

go go

g2 g2

g4 g4

S6 g6

Disk 1 Disk 2 Disk 3

cg]
g3

g5

27 3gl

g3

g5

g7 ngl

g3

g5

g7 ogl

g3

g5

g7

Disk 4 Disk 5 Disk 6 Disk 7

Stmdard, Mu]tiple RAID

3gl

g2

g5

g7 1gl

g3

g4

g7

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

Dcclustered Parity RAID

Figure 8. Standard versus declustered-parity RAID. This figure illustrates examples of standard and
declustered-parity RAID with eight disks and a parity group size of four, Identically labeled blocks belong
to the same parity group. In the standard RAID organization parity groups are composed of disks from one

of two nonoverlapping subsets of disks. In the declustered-parity RAID, parity groups span many
overlapping subsets of disks.

failed disk bear the entire weight of
the increased load. The declustered-par-

ity RAID organization solves this prob-
lem by distributing the increased load
uniformly over all disks [Muntz and Lui
1990; Merchant and Yu 1992; Holland
and Gibson 1992; Holland et al. 1993; Ng
and Mattson 1992].

Figure 8 illustrates examples of stan-
dard and declustered-parity RAIDs for
systems with an array size of eight disks
and a parity group size of four. In this
case, a multiple-RAID system is con-
structed by striping data over two RAIDs
of four disks each with non-overlapp-
ing parity groups. The declustered-parity
RAID is constructed by overlapping par-
ity groups. If Disk 2 fails, each read to
Disk 2 in the standard, multiple RAID
generates a single disk access to Disks O,
1, and 3 and no disk access to Disks 4, 5,
6, and 7. In the declustered-parity RAID,
a random read to Disk 2 generates an
access to Disks 4, 5, and 7 one-quarter of

the time; to Disks O, 1, and 3 half of the
time; and to disk 6 three-quarters of the
time. Although the increased load is not
uniform, it is more balanced than in the
standard RAID. Slightly more complex
declustered-parity RAIDs exist that dis-
tribute the load uniformly such that each
read to disk 2 generates an average of
0.429 disk accesses to all nonfailed disks.

The simplest way to create a declus-
tered-parity RAID that distributes load
uniformly is to create a set of parity
groups including every possible mapping
of parity group members to disks. In our

[1

8
example, this would result in

4
= 70

distinct mappings of parity groups to
disks. For nearly all practical array and
parity group sizes, declustered-parity
RAID organizations are possible that dis-
tribute reconstruction load uniformly
with much fewer than the combinatorial
number of parity groups. Such organiza-
tions can be devised using the theory of

ACM Computing Surveys, Vol. 26, No 2, June 1994

170 “ Peter M. Chen et al.

balanced incomplete block designs [Hall
1986]. In practice, the load does not need
to be absolutely balanced, and a close
approximation is sufficient.

To summarize, often a declustered-par-
ity RAID is preferable to a standard,
multiple RAID because it distributes load
uniformly during both the normal and
failed modes of operation. This allows a
more graceful degradation in perfor-
mance when a disk fails and allows the
failed disk to be reconstructed more
quickly since all disks in the disk array
can participate in its reconstruction. Ad-
ditionally, unlike the example in Figure
8, the disk array size in a declustered-
parity RAID does not have to be a multi-
ple of the parity group size. Any combi-
nation of array and parity group sizes
such that the array size is greater than
the parity group size is feasible. Declus-
tered-parity RAID has two main disad-
vantages. First, it can be somewhat less
reliable than standard, multiple RAID;
any two disk failures will result in data
loss since each pair of disks has a parity
group in common. In a standard, multi-
ple RAID, the parity groups are disjoint,
so it is possible to have more than one
disk failure without losing data as long
as each failure is in a different parity
group. Second, the more complex parity

groups could disrupt the sequential
placement of data across the disks. Thus,
large requests are more likely to en-
counter disk contention in declustered-
parity RAID than in standard multiple
RAID. In practice, it is difficult to con-
struct workloads where this effect is
significant.

4.3 Exploiting On-Line Spare Disks

On-line spare disks allow reconstruction
of failed disks to start immediately,
reducing the window of vulnerability
during which an additional disk failure
would result in data loss. Unfortunately,
they are idle most of time and do not
contribute to the normal operation of the
system. This section describes two tech-
niques, distributed sparing and parity

sparing, that exploit on-line spare disks

Figure 9. Distributed sparing. Distributed sparing
distributes the capacity of the spare disk through-

put the array. This allows all disks, including the
disk that would otherwise have been a dedicated
spare, to service requests. This figure illustrates a
RAID level-5 disk array with distributed sparing.
The ‘Ps denote parity blocks, and ‘S’s denote spare

blocks,

to enhance performance during the nor-
mal operation of the system.

As Figure 9 illustrates, distributed
sparing distributes the capacity of a spare
disk across all the disks in the disk array
[Menon et al. 1991]. The distribution of
spare capacity is similar to the distribu-
tion of parity in RAID level-5 disk ar-
rays. Instead of N data and one spare
disk, distributed sparing uses N + 1 data
disks that each have l\(lV + l)th spare
capacity. When a disk fails, the blocks on
the failed disk are reconstructed onto the
corresponding spare blocks. Distributed
sparing obviates dedicated spare disks,
allowing all disks to participate in servic-
ing requests, and thereby improving per-
formance during the normal operation of
the disk array. Additionally, because each
disk is partially empty, each disk failure
requires less work to reconstruct the con-
tents of the failed disk. Distributed spar-
ing has a few disadvantages. First, the
reconstructed data must eventually be
copied onto a permanent replacement for
the failed disk. This creates extra work
for the disk array, but, since the copying
can be done leisurely, it does not signifi-
cantly affect performance. Second, be-
cause the reconstructed data is distri-
buted across many disk whereas it was
formerly on a single disk, reconstruction
disturbs the original data placement,
which can be a concern for some 1/0 in-
tensive applications. In disk arrays with
dedicated spares, the data placement
after reconstruction is identical to the
data placement before reconstruction.

ACM Computmg Surveys, Vol 26, No 2, June 1994

Figure 10. Parity sparing. Parity sparing is simi-
lar to distributed sparing except that the spare
space is used to store a second set of parity infor-
mation.

Parity sparing is similar to distributed
sparing, except that it uses the spare
capacity to store parity information
[Chandy and Reddy 1993]. As with dis-
tributed sparing, this eliminates dedi-
cated spare disks, improving perfor-
mance during normal operation. The sec-
ond set of parity blocks can be used in a
variety of ways. First, they can be used
to partition the disk array logically into
two separate disk arrays, resulting in
higher reliability. In Figure 10, for exam-
ple, POa might compute the parity over
blocks 1 and 2 while POb computes the
parity over blocks 3 and 4. Second, the
additional parity blocks can be used to
augment the original parity groups. In
Figure 10, if one assumes that the parity
of blocks 1, 2, 3, 4, POa, and POb is
always zero, write operations need to up-
date only one of POa or POb. This has the
benefit of improving small write perfor-
mance by allowing each small write to
choose the parity block it will update
based on information such as the queue
length and disk arm position at the two
alternative disks. Third, the extra parity
blocks can be used to implement P + Q
redundancy. When a disk fails, the disk
array converts to simple parity. By logi-
cal extension, a second disk failure would
result in a RAID level-O disk array.

Both distributed sparing and parity
sparing offer interesting ways to exploit
on-line spares for improved performance.
‘They are most effective for disk arrays
with a small number of disks where the
fraction of spare disks to nonspare disks
is likely to be large. As disk arrays be-
come larger, a smaller fraction of spare
disks is needed to achieve the same level
of reliability [Gibson 1991].

RAID ● 171

4.4 Data Striping in Disk Arrays

Distributing data across the disk array
speeds up 1/0s by allowing a single 1/0
to transfer data in parallel from multiple
disks or by allowing multiple 1/0s to
occur in parallel. The disk array designer
must keep in mind several tradeoffs when
deciding how to distribute data over the
disks in the disk array to maximize
performance, balancing two conflicting
goals:

Maximize the amount of useful data
that each disk transfers with each logi-
cal 1/0. Typically, a disk must spend
some time seeking and rotating be-
tween each logical 1/0 that it services.
This positioning time represents wast-
ed work—no data is transferred during
this time. Hence it is beneficial to max-
imize the amount of useful work done
in between these positioning times.

Utilize all disks. Idle times are similar
to positioning times in that during idle
times, no useful work is done. Idle times
can arise in two different situations.
First, hot spots can exist, where certain
disks (the hot disks) are more heavily
used than other disks (the cold disks)
[Friedman 1993; Wilmot 1989]. Second,
it is possible that all disks could be
used evenly when viewed over a long
period of time but not evenly at every
instant. For example, if there is only
one request to the disk array and that
request only uses one disk, then all
other disks will remain idle.

These goals are in conflict because the
schemes that guarantee use of all disks
spread data widely among more disks
and hence cause each disk to transfer
less data per logical 1/0. On the other
hand, schemes that maximize the amount
of data transferred per logical 1/0 may
leave some disks idle. Finding the right
balance between these two goals is the
main tradeoff in deciding how to dis-
tribute data among multiple disks and is
heavily workload dependent.

Data striping, or interleaving, is the
most common way to distribute data
among multiple disks. In this scheme,

ACM Computing Surveys, Vol. 26, No. 2, June 1994

172 ● Peter M. Chen et al,

logically contiguous pieces of data are
stored on each disk in turn. We refer to
the size of each piece of data as the strip-
ing unit. The main design parameter in
data striping is the size of this striping
unit. Smaller striping units cause logical
data to be spread over more disks; larger
striping units cause logical data to be
grouped, or clustered, together on fewer
disks. Consequently, the size of the strip-
ing unit determines how many disks each
logical 1/0 uses.

Because the interaction between work-
load and striping unit can have a sub-
stantial effect on the ~erformance of a
disk array with block-interleaved strip-
ing, Chen and Patterson [1990] de-
veloped rules of thumb for selecting a
striping unit. Their simulation-based
model evaluated a spindle-synchronized
disk array of 16 disks. The stochastic
workload applied to the disk array had
two main parameters: average request
size (varied from 4–1500 KB). and the
number of concurrent, independent logi-
cal requests (varied from 1–20). Their
goal was to find the size of a striping unit
that gave the largest throughput for an
incompletely specified workload. They
found that the most important workload
parameter was concurrency. When the
concurrency of the workload was known,
a simple formula specified a striping unit
that provided S)570 of the maximum
throughput possible for any particular
request distribution:

1 sector + 1/4* average positioning time

* data transfer rate

* (concurrency – 1)

where the average positioning time is the
disk’s average seek time for the workload
plus an average rotational delay. A strip-
ing unit selected by this expression is
small when the concurrency is low so
that every access can utilize all disks,
and larger when the concurrency is high
so that more different accesses can be
serviced in parallel. Intuitively, the prod-
uct of average positioning time and data
transfer rate balances the benefits and

the costs of striping data. The benefit of
striping is the decreased transfer time of
a single request, which saves approxi-
mately the transfer time of a stripe unit.
The cost of striping is the increased disk
utilization that arises from an additional
disk positioning itself to access the data.
The constant, 1/4, is sensitive to the
number of disks in the array [Chen and
Lee 1993].

If nothing is known about a workload’s
concurrency, Chen and Patterson [19901
found that a good compromise size for a
striping unit is

2/3 * average positioning time

* data transfer rate.

The constant, 2/3, is sensitive to the
number of disks in the array; research
needs to be done quantifying this rela-
tionship.

Lee and Katz [199 la] use an analytic
model of nonredundant disk arrays to
derive an equation for the optimal size of
data striping. The disk array system they
model is similar to that used by Chen
and Patterson [1990] described above.
They show that the optimal size of data
striping is equal to

{

PX(L – l)Z

N

where P is the average disk positioning
time, X the average disk transfer rate, L

the concurrency, Z the request size, and
N the array size in disks. Their results
agree closely with those of Chen and Pat-
terson. In particular, note that their
equation predicts also that the optimal
size of data striping is dependent only
the relative rates at which a disk posi-
tions and transfers data, PX, rather than
P or X individually. Lee and Katz show
that the optimal striping unit depends on
request size; Chen and Patterson show
that this dependency can be ignored
without significantly affecting perfor-
mance.

Chen and Lee [1993] conducted a fol-
low-up study to Chen and Patterson
[1990] to determine the striping unit for

ACM Computing Surveys. V()] 26, No 2, June 1994

RAID ● 173

RAID level-5 disk arrays. Reads in a
RAID level-5 are similar to reads (and
writes) in a RAID level O, causing the
optimal striping unit for a read-intensive
workload in a RAID level-5 to be identi-
cal to the optimal striping unit in a RAID
level O. For write-intensive workloads,
however, the overhead of maintaining
parity causes full-stripe writes (writes
that span the entire parity group) to be
more efficient than read-modify writes or
reconstruct writes (writes that do not
span an entire parity group). This addi-
tional factor causes the optimal striping
unit for RAID level-5 to be smaller for
write-intensive workloads than the strip-
ing unit for RAID level O by a factor of 4
for a 16-disk array. They explored also
the relationship between the optimal
striping unit and the number of disks
and found that the optimal striping unit
for reads varies inversely to the number
of disks, but that the optimal striping
unit for writes varies with the number of
disks. Overall, they found that the opti-
mal striping unit for workloads with an
unspecified mix of reads and writes was
independent of the number of disks and
recommended (in the absence of specific
workload information) that the striping
unit for RAID level-5 disk arrays with
any number of disks be set to

1/2 * average positioning time

* data transfer rate.

Currently, researchers are investigat-
ing ways to distribute data other than a
simple round-robin scheme. Some vari-
ations are: choosing a different striping
unit for each file and distributing data by
hashing or heat-balancing [Weikum and
Zabback 1992; Scheuermann et al. 1991;
Copeland et al. 1988].

That is, a disk array request consists of
multiple-component disk requests that
must be queued and serviced indepen-
dently, then joined together to satisfy the
disk array request. Currently, exact solu-
tions exist for certain two-server fork-join
queues; however, the general k-server
fork-join queue is an open research prob-
lem. Additionally, the bursty nature of
most real 1/0 workloads is difficult to
model using existing performance mod-
els, which generally deal only with the
steady-state behavior of the system.
Thus, most performance models of block-
interleaved disk arrays place heavy re-
strictions on the configuration of the disk
array or the types of workloads that can
be modeled. So far, a satisfactory perfor-
mance model for RAID level-5 disk ar-
rays that models both reads and writes
over a wide range of system and work-
load parameters has yet to be formu-
lated.

Kim [1986] derives response time
equations for synchronous byte-
interleaved disk arrays by treating the
entire disk array as an M/G/1 queuing
system. That is, the entire disk array is
modeled as an open queuing system with
an exponential interarrival distribution,
general service time distribution, and a
single server consisting of all the disks in
the disk array. The study compares the
performance of an n-disk synchronous
byte-interleaved disk array with n inde-
pendent disks with uniform load and n
independent disks with skewed load. She
concludes that byte interleaving results
in reduced transfer time due to increased
parallelism in servicing requests and bet-
ter load balancing but dramatically re-
duces the number of requests that can be
serviced concurrently.

Kim and Tantawi [1991] derive

4.5 Performance and Reliability Modeling
approximate service time equations for
asynchronous (disks rotate inde~en-

This section presents a brief summary of dehtly of one another) byte-interle~ved
work that has been done in modeling the disk arrays. Disk seeks are assumed
performance and reliability of disk ar- to be distributed exponentially, and rota-
rays. General performance models for tional latencies are assumed to be dis-
block-interleaved disk arrays are very tributed uniformly. The results of the an-
difficult to formulate due to the presence alytic equations are compared with the
of queuing and fork-join synchronization. results of both synthetic and trace-driven

ACM Computmg Surveys, Vol. 26, No. 2, June 1994

174 “ Peter M. C?lenet al.

simulations. An important conclusion of
the paper is that for a wide range of seek
time distributions, the sum of the seek
and rotational latency can be approxi-
mated by a normal distribution.

Chen and Towsley [1991] model RAID
level-l and RAID level-5 disk arrays ana-
lytically for the purpose of comparing
their performance under workloads con-
sisting of very small and large requests.
Bounds are used for approximate model-
ing of the queuing and fork-join synchro-
nization in RAID level-l disk arrays.
Small write requests in RAID level-5 disk
arrays are handled by ignoring the fork-
join synchronization overhead, resulting
in a somewhat optimistic model. Large
requests are modeled by using a single
queue for all the disks in the disk array.
The results of the model are compared
against simulation.

Lee and Katz [1991a; 1993] derive ap-
proximate throughput and response time
equations for block-interleaved disk ar-
rays. Their model is the first analytic
performance model for general block-in-
terleaved disk arrays that takes into
account both queuing and fork-join syn-
chronization. Previous models have ig-
nored either the queuing or fork-join syn-
chronization component of the system.
Lee and Katz [199 la] provide also a sim-
ple application of the analytic model to
determine an equation for the optimal
unit of data striping in disk arrays.

In addition to analytic models specifi-
cally for disk arrays, work dealing with
the modeling of fork-join queuing sys-
tems in general [Baccelli 1985; Flatto and
Hahn 1984; Heidelberger and Trivedi
1982; Nelson and Tantawi 1988] is use-
ful when modeling disk arrays. However,
most of these papers model highly re-
strictive systems that are not easily ap-
plied to disk arrays.

The reliability of disk arrays is most
frequently modeled using continuous-
time Markov chains. The failure and re-
covery of components in the system cause
transitions from one state to another.
Generally, the most useful information
derived from such models is the average
time to system failure and the equilib-

rium state probabilities from which one

can determine the fraction of failures

caused by each type of failure mode. A

disadvantage of Markov reliability mod-

els is that the number of states necessary

to model even simple disk arrays in-

creases exponentially as new failure

modes and system components are intro-

duced. Fortunately, because the repair/

replacement rates for components of most

disk arrays are much higher than the

failure rates, it is usually possible to sim-

plify greatly the Markov models by elimi-

nating states that very rarely occur. To

date, [Gibson 1991] presents the most

complete reliability study of disk arrays.

5. CASE STUDIES

Since the first publication of the RAID
taxonomy in 1987, the disk drive indus-
try has been galvanized by the RAID
concept. At least one market survey, pre-
pared by Montgomery Securities [1991],
predicted (optimistically) that the disk
array market would reach $7.8 billion by
1994. Companies either shipping or hav-
ing announced disk array products in-
clude: Array Technology Corporation (a
subsidiary of Tandem), Ciprico, Compaq,
Data General, Dell, EMC Corporation,
Hewlett-Packard, IBM, MasPar, Maxi-
mum Strategies, Microtechnologies Cor-
poration, Micropolis, NCR, StorageTek,
and Thinking Machines. RAID technol-
ogy has found application in all major
computer system segments, including su-
percomputing, mainframes, minicomput-
ers, workstation file servers, and PC file
servers. We highlight some of these sys-
tems in the following subsections.

5.1 Thinking Machines Corporation
ScaleArray

The TMC ScaleArray is a RAID level 3
for the CM-5, which is a massively paral-
lel processor (MPP) from Thinking Ma-
chines Corporation (TMC). Announced in
1992, this disk array is designed for sci-
entific applications characterized by high
bandwidth for large files. Thinking Ma-
chines also provides a file system that

ACM Computmg Surveys, Vol 26, No 2, June 1994

RAID ● 175

can deliver data from a single file to
multiple processors from multiple disks
[Lo Verso et al. 1993].

The base unit consists of eight IBM
Model 0663E 15 disks. These 3.5-inch
disks contain 1.2 GB of data and can
transfer up to 2 MB/second for reads
and 1.8 MB/second for writes. A pair of
disks is attached to each of four SCSI-2
strings, and these four strings are at-
tached to an 8 MB disk buffer. Three of
these base units are attached to the
backplane, so the minimum configura-
tion is 24 disks. TMC expects the 24
disks to be allocated as 22 data disks,
one parity disk, and one spare, but these
ratios are adjustable.

Perhaps the most interesting feature of
the ScaleArray is that these base units
are connected directly to the data-routing
network of the CM-5. Normally, mas-
sively parallel processors reserve that
network to send messages between pro-
cessors, but TMC decided to use the same
network to give them a scalable amount
of disk 1/0 in addition to a scalable
amount of processing. Each network link
offers 20 MB/second, and there is a net-
work link for each base unit. As a conse-
quence of communicating with the data
network and the small message size of
the CM-5, the interleaving factor is only
16 bytes. Parity is calculated by an on-
board processor and sent to the appropri-
ate disk.

Using the scalable MPP network to
connect disks means there is almost no
practical limit to the number of disks
that can be attached to the CM-5, since
the machine was designed to be able to
scale to over 16,000 nodes. At the time of
announcement, TMC had tested systems
with 120 disks. Using their file system
and 120 disks (including a single parity
disk), TMC was able to demonstrate up
to 185 MB/second for reads and up to
135 MB/second for writes for 240 MB
files. In another test, TMC demonstrated
1.5 to 1.6 MB/second per disk for reads
and 1.0 to 1.1 MB/second per disk for
writes as the number of disks scaled from
20 to 120. For this test, TMC sent 2 MB
to each disk from a large file.

5.2 StorageTek Iceberg 9200 Disk
Array Subsystem

StorageTek undertook the development
of disk array-based mainframe storage
products in the late 1980s. Their array,
called Iceberg, is based on collections of
5.25-inch disk drives yet appears to the
mainframe (and its IBM-written operat-
ing system) as more traditional IBM 3380
and 3390 disk drives. Iceberg imple-
ments an extended RAID level-5 and
level-6 disk array. An array consists of 13
data drives, P and Q drives, and a hot
spare. Data, parity, and Reed-Solomon
coding are striped across the 15 active
drives within the array. A single Iceberg
controller can manage up to four such
arrays, totalling 150 GB of storage.

Iceberg incorporates a number of inno-
vative capabilities within its array con-
troller, called Penguin. The controller
itself is organized as an 8-processor
system and executes its own real-time
operating system. The controller can si-
multaneously execute 8-channel pro-
grams and can independently transfer on
four additional channels.

The controller manages a large, bat-
tery-backed semiconductor cache (from 64
MB up to 512 MB) in front of the disk
array. This “extra level of indirection”
makes possible several array optimi-
zation. First, the cache is used as a
staging area for compressing and decom-
pressing data to and from disk. This com-
pression can double the effective storage
capacity of the disk array. Second, when
written data is replaced in the cache, it is
not written back to the same place on
disk. In a manner much like Berkeley’s
Log-Structured File System [Rosenblum
and Ousterhout 1991], data is written
opportunistically to disk in large track-
sized transfer units, reducing random ac-
cess latencies and performing adaptive
load balancing. And third, the cache
makes it possible to translate between
the variable-length sectors used by most
IBM mainframe applications and the
fixed-size sectors of commodity small disk
drives. StorageTek calls this process dy-

namic mapping. The controller keeps

ACM Computing Surveys, Vol 26, No. 2, June 1994

176 ● Peter M. Chen et al.

Fast/Wide

SCSI-2
Host Interconnect

---cE51—

n I Fast

v u

53C916

v u-

53C916

t
~.

NCR

53C916

I 1$
NCR 53C9N)

I Read/Modify/’Wri[e
SRAM Buffer I

Figure 11. NCR 6’298 controller data path. The lock-step data path of the 6298 requires no memory for
any operations except RAID level-5 writes. By placing the XOR and MUX directly in the data path, the

controller can generate parity or reconstruct data on the fly,

track of free space within the array and
must reclaim space that is no longer be-
ing used. The free-space data structures
and track tables mapping between logi-
cal IBM 3380 and 3390 disks and the
actual physical blocks within the array is
maintained in a separate, 8 MB, non-
volatile controller method. Due to the
complexity of the software for a system
as ambitious as Iceberg, the product is
over a year behind schedule, though at
the time of this writing it is in beta test.

5.3 NCR 6298

The NCR 6298 Disk Array Subsystem,
released in 1992, is a low-cost RAID sub-
system supporting RAID levels O, 1, 3,
and 5. Designed for commercial environ-

ments, the system supports up to four

controllers, redundant power supplies

and fans, and up to 20 3.5-inch SCSI-2

drives. All components—power supplies,

drives, and controllers—can be replaced

while the system services requests.

Though the system does not allow on-line

spares, built-in diagnostics notify the host

when a drive has failed, and reconstruc-

tion occurs automatically when a re-

placement drive is inserted.

The array controller architecture fea-

tures a unique lock-step design (Fig-are

11) that requires almost no buffering. For

all requests except RAID level-5 writes,

data flows directly through the controller

to the drives. The controller duplexes the

data stream for mirroring configurations

and generates parity for RAID level 3

ACM Comput]ng Surveys, Vol 26, No 2, June 1994

RAID ● 177

synchronously with data transfer. On
RAID level-3 reads, the system can op-
tionally read the parity along with
the data, proving an additional check of
data integrity, This lock-step nature also
means that RAID level-3 performance
does not degrade when a single drive
fails.

The RAID level-5 implementation does
not support full-stripe writes. Instead, the
write path uses an intermediate SRAM
buffer. When a write occurs, the old data
and parity are read (in lock-step) from
disk, exclusive-ored together, and stored
into a 64KB SRAM parity buffer. As a
side effect of data transfer from the host,
the contents of the parity buffer are ex-
elusive-ored with the data to generate
the up-to-date parity, and the parity is
written to the parity drive. While this
design prohibits the overlap of data
transfer for RAID level 5, the controller
overlaps the drive-positioning operations.
This parsimonious use of buffers, in con-
trast with architectures such as RAID-II,
lowers the cost of the controller.

The lock-step data path is also used for
reconstruction. Data and parity are read
synchronously from the surviving drives,
exclusive-ored together, and written to
the replacement drive, Therefore, recon-
struction is quite fast, approaching the
minimum time of writing a single drive.

The host interface is fast, wide, differ-
ential SCSI-2 (20 MB/s), while the drive
channels are fast, narrow SCSI-2 (10
MB/s). Because of the lock-step architec-
ture, transfer bandwidth to the host is
limited to 10 MB/s for RAID level O, 1,
and 5. However, in RAID level-3 configu-
rations, performance on large transfers
has been measured at over 14 MB/s
(limited by the host’s memory system).

5.4 TickerTAIP / DataMesh

TickerTAIP/DataMesh is a research pro-
ject at Hewlett-Packard Labs whose goal
is to develop an array of “smart” disk
nodes linked by a fast, reliable network
[Cao et al. 1993] (Figure 12). Each node
contains a disk, a CPU, and some local
memory. Disk array controller operations

merml mercomcc[
\ TickerTAIP

Im—Host comecmm ‘w 88—
Host connection C.’u— 88

Hmt comectlon c-w 88—
Host connection CPU 88

Figure 12. The TickerTAIP/DataMesh hardware
architecture. A unique feature of the TickerTAIP
architecture is the close association of a CPU to
each disk drive in the array. This association allows

each node to perform some of the processing needed
to perform a disk array operation.

such as parity computation are distribut-
ed among these smart disk nodes, and
the nodes communicate by message pass-
ing across the internal interconnect.

A unique feature of the TickerTAIP
architecture is the close association of a
CPU to each disk drive in the array (Fig-
ure 12). This association allows each node
to perform some of the processing needed
to perform a disk array operation. Addi-
tionally, a subset of nodes are connected
to the host computers that are request-
ing data. Because more than one node
can talk to the host computers, Ticker-
TAIP can survive a number of node fail-
ures. In contrast, many other disk arrays
have only one connection to host comput-
ers and hence cannot survive the failure
of their disk array controller.

Currently, TickerTAIP exists as a
small, 7-node prototype. Each node con-
sists of a T800 transputer, 4 MB of local
RAM, and one HP79560 SCSI disk drive.
The TickerTAIP project is developing
software to make the multiple, distribut-
ed processing nodes appear as a single,
fast storage server. Early results show
that, at least for computing parity, Tick-
erTAIP achieves near-linear scaling [Cao
et al. 1993].

‘5.5 The RAID-II Storage Server

RAID-II (Figure 13) is a high-bandwidth,
network file server designed and imple-
mented at the University of California at
Berkeley as part of a project to study

ACM Computing Surveys, Vol 26, No 2, June 1994

178 ● Peter ill. Chen et al.

Ethernet (Control and bw Latency Transfers).

High Bandwidth “ME
Transfers XBUS

Card
4 Port Interleaved

, TMC Memory (32 MB) File
HIPPI

HIPP1 TMC
HIPPI12—

4-by-8 by 32-bit ~=
Crossbar , :::;:

;,,~,
LINK —

::::::::::;:::
,,,,..,,, . .

‘“’’’Controntro. ::!::

; HIPPIS Bus IVME]IVMEI IVM’EIIVMEI BUS ;i:::.: :::;:,:.

;,,,,,,,

Figure 13. RAID-II architecture. A high-bandwidth crossbar connects the network interface (HIPPI), disk
controllers, multi ported memory system, and parity computation engine (XOR). An internal control bus
promdes access to the crossbar ports, while external point-to-point VME links provide control paths to the
surrounding SCSI and HIPPI interface boards. Up to two VME disk controllers can be attached to each of
the four WE interfaces.

high-performance, large-capacity, highly
reliable storage systems [Chen et al.
1994; Drapeau et al. 1994; Katz et al.
1993]. RAID-H interfaces a SCSI-based
disk array to a HIPPI network. One of
RAID-II’s unique features is its ability to
provide high-bandwidth access from the
network to the disks without transfer-
ring data through the relatively slow file
server (a Sun4/280 workstation) mem-
ory system. To do this, the RAID project
designed a custom printed-circuit board
called the XBUS card.

The XBUS card provides a high-band-
width path among the major system com-
ponents: the HIPPI network, four VME
busses that connect to VME disk con-
trollers, and an interleaved, multiported
semiconductor memory. The XBUS card
also contains a parity computation en-

gine that generates parity for writes and
reconstruction on the disk array. The
data path between these system conlpo-
nents is a 4 X 8 crossbar switch that can
sustain approximately 160 MB/s. The
entire system is controlled by an external
Sun 4/280 file server through a memory-
mapped control register interface. Figure
13 shows a block diagram for the con-
troller.

To explore how the XBUS card en-
hances disk array performance, Chen
et al. [1994] compare the performance of
RAID-H to RAID-I (Table 7). RAID-I is
basically RAID-II without the XBUS card
[Chervenak and Katz 1991]. They find
that adding a custom interconnect board
with a parity engine improves perfor-
mance by a factor of 8 to 15 over RAID-I.
The maximum bandwidth of RAID-II is

ACM Computing Surveys, Vol 26, No 2, June 1994

RAID ● 179

Table 7. Performance Comparison between RAID-II and RAID-I

Disk Array Read Disk Array Write Write Performance

Performance Performance Degradation

RAID-I 2.4 IW3fs 1.2 MBJS 50%

RAID-II ~().9 MB/~ 18.2 kiB/s 13%
-1

RAID-II speedup 8.7 15.2

This table compares the performance of RAID-II to that of RAID-I. Because RAID-II has a special-purpose

parity engine, disk array write performance is comparable to disk array read performance. All writes in
this test are full-stripe writes [Lee and Katz 1991 b], For RAID-II reads, data is read from the disk array
into XBUS memory, then sent over the HIPPI network back to XBUS memory. For RAID-I reads, data is

read from the disk array into Sun4 memory, then copied again into Sun4 memory. This extra copy
equalizes the number of memory accesses per data word. For RAID-II writes, data starts in XBUS
memory, is sent over HIPPI back into XBUS memory, parity is computed, and the data and parity are

written to the disk subsystem. For RAID-I writes, data starts in Sun4 memory, gets copied to another
location in Sun4 memory, then is written to disk. Meanwhile, parity is computed on the Sun4 and later
written to disk. RAID-I uses a 32 KB striping unit with 8 disks (and is performance-limited by the Sun4’s

VME bus); RAID-II uses a 64 KB striping unit with 24 disks.

between 20 and 30 MB\s, enough to sup-
port the full disk bandwidth of approxi-
mately 20 disk drives.

5.6 IBM Hagar Disk Array Controller

Hagar is a disk array controller pro-
totype developed at the IBM Almaden
Research Center [Menon and Courtney
1993]. Hagar was designed for large ca-
pacity (up to 1 TB), high bandwidth (up
to 100 MB/s), and high 1/0 rate (up to
5000 4 KB 1/0s per second). Addition-
ally, Hagar provides high availability
through the use of redundant hardware
components, multiple power boundaries,
and on-line reconstruction of data.

Two design features of Hagar are espe-
cially noteworthy. First, Hagar uses bat-
tery-backed memory to allow user writes
to provide safe, asynchronous writes (as
discussed in Section 4.1.1). The designers
of Hagar require each write to be stored
in two separate memory locations in two
different power regions to further in-
crease reliability.

Second, Hagar incorporates a special-
purpose parity computation engine in-
side the memory of the controller. This is
in contrast to the RAID-II architecture,
which places the parity engine as a port
on the controller bus (Figure 13). The
Hagar memory system supports a special
store operation that performs an exclu-

sive-or on the current contents of a mem-
ory location with the new data, then
writes the result to that location. Incor-
porating the parity engine in the memory
complicates the memory system, but it
reduces the data traffic on the controller’s
internal data bus.

Hagar was never fully operational;
however, IBM is working on future disk
array products that use ideas from
Hagar.

6. OPPORTUNITIES FOR
FUTURE RESEARCH

Redundant disk arrays have rejuvenated
research into secondary storage systems
over the past five to seven years. As this
survey highlights, much has been pro-
posed and examined, but much is left
to do. This section discusses the classes
of research not adequately understood
with particular attention to specific
problems.

6.1 Experience with Disk Arrays

As an over five-year-old research
that has sported products for at
six years, redundant disk arrays

open

area
least
have

rem&-kably few published measurement
results and experience. In addition to
validating models and techniques found
in the literature, such experience reports

ACM Computmg Surveys, Vol 26, No 2, June 1994

180 . Peter M. CJzen et al.

can play an important role in technol-
ogy transfer [Buzen and Shum 1986].
Furthermore, measurements frequent-
ly form the basis for developing new
optimizations.

6.2 Interaction among New Organizations

As this survey describes, there are many
new and different disk array organiza-
tions. Most of these, including double

failure correction, declustered parity,
parity logging, floating parity, distribut-
ed sparing, log-structured file systems,
and file-specific data striping, have been

studied only in isolation. Unquestion-
ably, among these there will be signifi-

cant interactions, both serious new
problems and obvious simplifications or
optimizations.

As more is understood about the inter-
actions among disk array technologies,
designers and managers of disk arrays
will be faced with the task of configur-
ing and tuning arrays. As Section 4.5
discusses, redundant disk array perfor-
mance and reliability modeling is largely
incomplete and unsophisticated. Work
needs to be done in the application of
fundamental modeling to the problem of
disk arrays as well as the development of
that fundamental modeling, fork-join
queuing models in particular. A good goal
for this work is graphical, interactive
analysis tools exploiting low-overhead
monitoring data to guide configuration
and tuning.

One objection lodged commonly against
redundant disk arrays, particularly some
of the newly proposed technologies, is
their relatively high complexity. Storage
systems are responsible for more than
just the availability of our data, they are
responsible for its integrity. As the com-
plexity goes up, the opportunity for
disastrous latent bugs also rises. This is
compounded by the desire to increase
performance by continuing computation
as soon as storage modifications are de-
livered to storage server memory, that is,
before these modifications are committed
to disk. Inexpensive and highly reliable
mechanisms are needed to control the

vulnerability to increased software com-
plexity of storage systems.

6.3 Scalability, Massively Parallel
Computers, and Small Disks

One of the key motivations for redundant
disk arrays is the opportunity to increase
data parallelism in order to satisfy the
data processing needs of future gener-
ations of high-performance computers.
This means that arrays must scale up
with the massively parallel computers
that are being built and the even more
massively parallel computers being
planned. Massively parallel disk arrays
introduce many problems: physical size,

connectively, delivery system bottle-
necks, and storage control processing re-
quirements to name a few. The most
compelling approach to ever larger disk
arrays is to embed storage based on the
new generations of small diameter disks
into the fabric of massively parallel com-
puters, use the computer’s intercon-
nection network for data distribution
and redundancy maintenance, and dis-
tribute the storage control processing
throughout the processors of the parallel
computer.

Though compelling, this approach has
substantial problems to be overcome. Pri-
mary among these are the impact on the
interconnection network of distributing
the redundancy computations [Cao et al.
1993], the impact on the processors of
distributing storage control, and the via-
bility of allocating data on storage de-
vices near the processors that will use it.

6.4 Latency

Redundant disk arrays are fundamen-
tally designed for throughput, either high
transfer rates for large, parallel transfers
or large numbers of concurrent small ac-
cesses. They are effective only for reduc-
ing access latency when this latency is
limited by throughput. For lower-
throughput workloads, disk arrays en-
hance storage performance only slightly
over traditional storage systems.

Caching is the main mechanism for
reducing access latency, but caching can

ACM Computmg Surveys, Vol 26, No 2, June 1994

RAID 9 181

be ineffective either because data is too
large, too infrequently accessed, or too
frequently migrated among caches. For
these workloads, data prefetching is es-
sential. Research into aggressive pre-
fetching systems is beginning to examine
opportunities to extract or predict future
accesses and provide mechanisms to effi-
ciently utilize available resources in an-
ticipation of these accesses [Korner 1990;
Kotz and Ellis 1991; Gibson et al. 1992;
Patterson et al. 1993; Tait and Duchamp
1991].

7. CONCLUSIONS

Disk arrays have moved from research
ideas in the late 1980’s to commercial
products today. The advantages of using
striping to improve performance and re-
dundancy to improve reliability have
proven so compelling that most major
computer manufacturers are selling or
intending to sell disk arrays. Much re-
search and implementation have been
accomplished, both in industry and uni-
versities, but many theoretical and prac-
tical issues remain unresolved. We look
forward to the many more fruitful years
of disk array research.

ACKNOWLEDGMENTS

We thank Bill Courtright, Mark Holland, Jai

Menon, and Daniel Stodolsky for reading an earlier

draft of this article and for their many helpful

comments. We are especially indebted to Bill Cour-

tright and Daniel Stodolsky for writing the section

of this article describing the NCR disk array.

ANNOTATED BIBLIOGRAPHY

AMDAI-IL, G. M. 1967. Validi~ of the single pro-

cessor approach to achieving large scale com-
puting capabilities. In Proceedings of the AFIPS
1967 Spring Joint Computer Conference. Vol.
30. AFIPS, Washington, D. C., 483–485. Three-
page paper that eloquently gives case for tradi-
tional computers by pointing out that perfor-
mance improvement is limited by portion of the

computation that is not improved.

BACCELLI, F. 1985. Two parallel queues created
by arrivals with two demands. Tech Rep. 426,
INRIA, Rocquencourt, France. Derives an exact

solution for the two-server, M/G/ 1 fork-join
queue.

BHIDE, A. AND DIAS, D. 1992. Raid architectures
for OLTP. Tech. Rep. RC 17879 (#78489), IBM,

Yorktown Heights, N.Y. Increases throughput
for workloads emphasizing small, random write

accesses in a redundant disk array by logging

changes to parity for efficient application later.
Parity changes are logged onto a separate disk

which must be externally sorted before applica-
tion to the disk array’s parity.

BITTON, D. AND GRAY, J. 1988. Disk shadowing.
In Very Large Database Conference XIV. Mor-

gan Kaufmann, San Mateo, Calif., 33 1–338.
Describes disk mirroring and derives an ana-
lytical equation for read and write seek dis-
tances as a function of the number of data
copies.

BURKHARDT, W. AND MENON, J. 1993. Disk array

storage system reliability. In the 23rd Annual
International Symposium on Fault-Tolerant

Con-zputmg. IEEE Computer Society, Washing-
ton, D. C., 432–441. Argues need for multiple
error-correcting disk arrays; discusses how to
use maximal-distance separable codes to pro-

tect against multiple errors in a space-efficient
manner.

BUZEN, J. AND Smm, W. C. 1986. 1/0 architec-

ture in MVS/370 and MVS/XA. CMG Trans.
54 (Fall), 19-26. Overview of the MVS/370
and MVS/XA 1/0 architecture. Describes
channel paths, storage directors, string con-
trollers, rotational position sensing, static and

dynamic reconnect.

CAO, P., LIM, S. B., VENK.ATAFtAMAN, S., AND WILKES,

J. 1993. The TickerTAIP parallel RAID ar-

chitecture. In Proceedings of the 1993 In terna -
tional Symposium on Computer Architecture.
IEEE, New York. Describes the TickerTAIP
architecture, software implementation issues,
and the performance of different methods of
distributing parity computation among multi-
ple processors.

CHANDY, J. AND REDDY, A. L. N. 1993. Failure

evaluation of disk array organizations. In F’ro-
ceedmgs of the International Conference on Dis-
tributed Computing Systems. IEEE Computer
Society, Washington, D.C. Contrasts four previ-

ously described schemes for minimizing data
reconstruction time in small (7 and 16 disks)

redundant disk arrays: RAID 5 with a single
spare disk, RAID 5 with a single spare whose

space is distributed across all disks, a special
case of Muntz and Lui’s parity-clustering orga-
nization, and a method of dynamically convert-
ing a redundant data disk to a spare disk by
merging two redundancy groups into one larger
group. The second, distributed sparing, is gen-
erally preferred because of its performance and
simplicity, but the Muntz scheme is better for
minimal impact of user performance during
recovery.

CHEN, P. M., GIBSON, G., KATZ, R., AND PATTERSON,
D. A. 1990. An evaluation of redundant ar-

rays of disks using an Amdahl 5890. In Pro-
ceedings of the 1990 ACM SIGMETRICS
Conference on Measurement and Modeling of

ACM Computing Surveys, Vol. 26, No. 2, June 1994

182 ● Peter &f. Chen et al.

Computer Systems. ACM, New York. The first
experimental evaluation of RAID. Compares

RAID levels O, 1, and 5.

CHEN. P. M. .iND PATTERSON, D. A. 1990 Maxi-
mizmg performance m a str~ped disk array. In
Proceedings of the 1990 Internatmnal Sympo-

swrn on Computer ArchztecYure. IEEE, New
York, 322–331. Discusses how to choose the

strlpmg unit for a RAID level-O disk array.

CHEN, S, AND TOWSLEY, D. 1991. A queuemg

anal ysis of RAID architectures. Tech. Rep.

COINS Tech. Rep. 91-71, Dept. of Computer
and Information Science, Univ of Mas.

sachusetts, Amherst, Mass Analytically mod-
els RAID level-l and RAID level-5 disk arrays
to compare their performance on small and
large requests. Bounds are used to model the
queuing and fork-loin synchmmzation m RAID
level-l disk arrays. Small write requests in

RAID level-5 disk arrays are handled by ignor-
ing the fork-join synchromzatlon overhead.

Large requests are modeled by using a single

queue for all the disks m the disk array.

CHEPJ, P. M AND LEE, E. K. 1993 Striping in a
RAID level-5 disk array Tech. Rep. C’SE-TR-
181-93, Univ. of Michigan, Ann Arbor, Mlch.

Discusses bow to choose striping umt for RAID

level-5 disk arrays. Quantifies effect of writes
and varying number of disks

CH~N, P. M., L!@ E. K,, DRAPEALI, A. L., LUTZ. K,
MILLER, E. L., SESHAN, S., SHIRRWF, K., PATTER-
S(JN D. A., .4NU KATZ, R, H. 1994, Perfor-

mance and design evaluation of the RAID-II

storage server. J. Dwtrlb. Parall. Databases.
To be published. Also in The 1993 Internatzonai
Parallel Processing Symposium Workshop on
I/O m Parallel Con2puter Systen2.s Summa-
rizes major architectural features of RAID-II

and evaluates bow they impact performance

CH~RVENAJi, A. L. ANI) KATZ. R. H. 1991 Perfor-
mance of a disk array prototype In Proceed-

1ngs of the 1991 ACM SIGMETRICS Con-
feren.e on Measurement and Modellng of Com-
puter Systems Perf. Elal. ReL). 19, 5 (May).
188-197 Evaluates the performance of RAID-I,
a CTC. Berkeley disk array prototype.

COPELAND, G., AJ.EXANOER, W., BCWGH’I MR, E . .ANLJ
KELLER, T. 1988 Data placement in Bubba
In Pruceedzngs of the ACM SIGMOD Intern a-
tmnal Conference on Management of Data
ACM, New York, 99–108. Ehscusses data allo-
cation in a large database.

DRA~EMJ, A. L., SHIRRIF~, K., LEE, E, K, CHEN,
P, M , GIBSON, G A., HARTMAN, J. H MILLER,

E. L., SFSJ+AN, S., KATZ, R. H , LUTZ. K, AND
PATTERSON, D. A 1994. RAID-II: A high-
bandwldth network file server In Proeeedmgs
of the 1994 Internatmnal Symposzum on Com-
puter Archztectw-e. IEEE, New l“ork. Describes
the architecture, file system, and performance
of RAID-II, a disk array file server prototype,

EMLICH, L, W. AND POLICH, H. D. 1989 VAXslm-
PLUS, a fault manager implementation Dzg.

Tech. J. 8, (Feb.) Describes D1~tal Eqmpment
Corporation’s tool for predicting and avoiding
disk failures

FLATTO, L. AND HAHN, S. 1984. Two parallel
queues created by arrivals with two demands

I}. SIAM J. Cmnput, 44, 5 (Oct.), 1041-1053,

Derives an exact solutlon for the two-server,

M/M/l, fork-join queue.

FRIEDMAN, M. B 1983. DASD access patterns. In

the 14th International Conference ori Manage-
ntent and Performance Evaluatwn of Computer
Systems Computer Measurement Group,

51–61 Looks at how much disk accesses are
skewed toward particular disks in se~,eral

transaction-processing sites.

GIBSON, G. A. 1992. Redundant disk arrays Re-
hable, parallel secondary storage Ph.D. thesis.
Univ of Califorma. Berkeley, Calif. Also avail-
able from MIT Press, Cambridge, Mass.
Award-winning dissertation that describes

RAIDs m detail, with emphasis on rehability
analysis of several alternatives,

GIBSON, G. A., PATTERSON, R. H,, AND SATYA-
NA.RAY.4NAN, M. 1992. Dusk reads with DRAM
latency In the 3rd Workshop on Warkstatzon
Operatzng Systems. IEEE Computer Society,

Washington, DC. Proposes that apphcatlons
give hints about their future file accesses so

that the buffer cache can prefetch needed data
and provide low-latency file access. The hints
could be exploited also to Improve cache man-
agement and disk scheduling

GRAY, J., HORST, B , AND WALK~R. M. 1990. Par-
ity striping of disc arrays: Low-cost rehable
storage with acceptable throughput In Pro-

cwdl ngs of the 16th i’ery Large Database Con-
ference. Morgan Kaufmann. San Mateo, Calif,
148–160. Describes a data and parity layout for

disk arrays called parity striping. Par@ strip-
ing M essentially RAID level 5 with an Infinite
striping umt and manual load balanclng,

H.4LL, Nl 1986. Cornbmatorzal Theory. 2nd ed.
Wdey-Interscience, New York. Textbook on

combinatorial theory. The section on balanced,
incomplete block designs are most rele~,ant for
readers of this article

HEIJMLBERGER, P AND TRIVEDI, K. S. 1982. Qeue-

mg network models for parallel processing with
asynchronous tasks. IEEE Trons Comput C-
31, 11 (No\,.). 1099– 1109. Deriz-es approximate
solutions for queuing systems with forks but no

Joins.

HENNEXW, J. L. AND P~TT~RSON, D. A. 1990,
Computer Architecture A Quantltatu,e Ap-
proach. Morgan Kaufmann, San Mateo, Calif.
Likely the most popular general book in com-
puter architecture today, the discussion on
technology trends, general 1/0 issues, and
measurements of seek distances are most rele-
vant to readers of this article

HOLLAND, M., AND GIBSON, G. 1992. Parity
declustermg for continuous operation in redun-

AC!M Cbmputmg Surveys, Vol 26. No 2, June 1994

dant disk arrays. In Proceedings of the 5th
International Conference on Architectural Sup-
port for Programming Languages and Operat-

ing Systems (ASPLOS-V), IEEE, New York,
23-35. Describes parity declustering, a tech-

mque for improving the performance of a re-

dundant disk array in the presence of disk
failure. Analyzes the proposed solution using
detailed simulation and finds sigmficant im-
provements (20–50Vc) in both user response

time and reconstruction time. Also analyzes a
set of previously-proposed optimizations that
can be applied to the reconstruction algorithm,
concluding that they can actually slow the re-
construction process under certain conditions.

HOLLAND, M. GIBSON, G,, AND SIF,WIOREK, D. 1993

Fast, on-line failure recovery in redundant disk

arrays. In Proceedings of the 23rd In tern a-
tional Symposium on Fault Talerant t30mput-
ing IEEE Computer Society, Washington, D.C.

Compares and contrasts two data reconstruc-
tion algorithms for disk arrays: “parallel

stripe-oriented reconstruction” and “disk-ori-
ented reconstruction.” Presents an implemen-

tation of the disk-oriented algorlthm and ana-
lyzes reconstruction performance of these algo-

rithms, concluding that the disk-oriented algo-
rlthm is superior. Investigates the sensitivity

of the reconstruction process to the size of the
reconstruction umt and the amount of memory
available for reconstruction.

HSIAO, H. AND DEWITT, D. 1990. Chained declus-

tering A ncw availability strategy for multi-
processor database machines. In Proceedings of

the 1990 IEEE Intern atumal Conference on
Data Engineering. IEEE, New York, 456-465.

Introduces a variation of mirroring, where the

secondary copy of data is distributed across the

disks in a dif~erent manner than the primary
copy of data.

KATZ, R. H. 1992. High performance network and

channel-based storage. Proc. IEEE 80, 8 (Aug.),
1238–1261. Presents overview of network-based

storage systems. Reviews hardware and soft-
ware trends in storage systems.

KATZ, R. H., CHEN, P. M., DRAIJMAU, A. L., Lm,
E, K., Lure, K,, MILLEIR, E. L., SMHAN, S.,
PATTERSON, D. A. 1993. RAID-II: Design and

implementation of a large scale disk array con-

troller. In the 1993 Symposium on Integrated
Systems. MIT Press, Cambridge, Mass. De-

scribes the design decisions and implementa-
tion experiences from RAID-IL

KIM, M. Y, 1986 Synchronized disk interleaving.
IEEE Trans. Comput. C-35, 11 (Nov.), 978-988.
Simulates the performance of independent
disks versus synchronized disk striping. De-
rives an equation for response time by treating
the synchronized disk array as an M/G/1
queuing system,

KIM, M, Y, ANU TANTAWI, A. N. 1991. Asyn-

chronous disk interleaving: Approximatmg ac-
cess delays. IEEE Trans. Comput. 40, 7 (July),

801–810. Derives an approximate equation for
access time in unsynchronized disk arrays
when seek times are exponentially distributed

and rotational latency is uniformly distributed.

KORNER, K. 1990. Intelligent caching for remote

file service. In Proceedings of the Znternatmnal

Conference on Distributed Computing Systems.
IEEE Computer Society, Washington, DC.,
220-226. Uses traces to generate hints based

on the program running and the directory and
name of files accessed. The file server uses the

hints to pick a caching algorithm: LRU, MRU,
none. Simulation showed sigmficant benefits
from intelhgent caching but not from read-
ahead which delayed demand requests since it
was not preemptable.

KOTZ, D. ANTI ELLIS, C. S. 1991. Practical
prefetching techniques for parallel file systems.
In Proceedings of the 1st International Confer-

ence on Parallel and Distributed Information
Systems. ACM, New York, 182–189. File access
predictors use past accesses to prefetch data in
idle nodes of a parallel file system Simulation

studies show that practical predictors often can
significantly reduce total execution time while

the penalty for incorrect predictions m modest.

LEE, E. K. ANU KATZ, R. H. 1991a An analytic
performance model of disk arrays and its appli-
cations. Tech. Rep. UCB/CSD 91/660, Univ. of
California, Berkeley, Calif Derives an analytic
model for nonredundant disk arrays and uses
the model to derive an equation for the optimal
size of data striping.

Lm, E. K. AND KATZ, R, H, 1991b. Performance

consequences of parity placement m disk ar-
rays, In Proceedings of the 4th International

Conference on Architectural Support for Pro-
gramming Languages and Operatzng Systems

(ASPLOS-ZV). IEEE, New Yorkj 190-199, In-
vestigates the performance of different meth-

ods of distributing parity in RAID level-5 disk
arrays.

Lm, E. K. AND KATZ, R. H. 1993. An analytic

performance model of disk arrays. In Proceed-
ings of th 1993 ACM SIGMETRICS Conference
on Measurement and Modehng of Computer
Systems. ACM, New York, 98–109. Slmdar to

earlier technical report with simdar name ex-
cept with better empirical justltlcations and a

more detailed study of the model’s properties.

LIVNY, M. KHOSHA~IAN, S., AND BORAI., H. 1987
Multi-disk management algorithms. In Prm
ceedings of the 1987 ACM SIGMETRICS Con-
ference On Measurement and Modeling of
Camputer System. ACM, New York, 69-77’.
Compares performance of disk arrays with
track-sized and infinite striping units. Con-
cludes that striping can improve performance
for many multidisk systems.

LOVERSO, S. J., ISMAN, M., AND NANOPOULOS, A.
1993. A Parallel file system for the CM-5. In
Proceedings of the USENIX Summer Conftir-

ACM Computing Surveys, Vol. 26, No, 2, June 1994

184 “ Peter M. Chen et al.

erzce. USENIX Assoclatlon, Berkeley, Calif. A
description of the 1/0 hardware and the file
system of the massively parallel processor from
Thinking Machines. Them RAID-3 disk array
has excellent performance for large file ac-

cesses.

MALHOTRA, M. AND TRIVE~I, S. 1993. Rehabihty
analysis of redundant arrays of inexpensive
disks. J. Parall. Dwtr. Comput. 17, (Jan.),
146– 151 Uses Markov models to derive exact,

closed-form reliability equations for redundant

disk arrays. Analysis accounts for failure pre-
diction and sparing.

MENON, J. AND CORTNEY, J. 1993. The architec-

ture of a fault-tolerant cached RAID controller
In Proceedings of the 20th International S.vm -
posum on Compufer Architecture IEEE, New
York, 76–86. Describes the architecture of Ha-
gar and several algorithms for asynchronous
writes that reduce susceptlblhty to data loss.

MF,NON, J., MATTSON, D., ANrI NG, S. 1991. Dis-
tributed sparing for improved performance of
disk arrays. Tech Rep. RJ 7943, IBM, Almaden
Research Center. Explores the use of an on-line
spare disk in a redundant disk array analyti-

cally It examines multiple configurations, but
fundamentally it distributes the spare’s space
over the whole array so that every disk is

N/(N + 2) data, l/(N + 2) parity, and l/(N
+ 2) spare. This gives an extra l/(N + 2) per-

formance, but, more significantly, it distributes
the recovery-write load (the reconstructed data)
over all disks to shorten recovery time. The
benefits, not surprisingly, are largest for small
arrays.

MENON, J., ROCHE, J., AND KASSON, J. 1993
Floating parity and data dmk arrays. J. Parall.
Dzstrib. Comput. 17, 129–139, Introduces float-

ing data and floating parity as an optimization
for RAID level-5 disk arrays. Discusses perfor-

mance and capacity overheads of methods.

MERCHANT, A. ANJ) Yu, P, 1992, Design and mod-
ehng of clustered RAID. In Proceedz ngs of the
International Symposium on Fault Tolerant
Computing. IEEE Computer Society, Washin-
gton, D. C., 140–149. Presents an implementa-
tion of parity declustering, which the authors
call “clustered RAID,” based on random permu-

tations, Its advantage is that it 1s able to derive
a data mapping for any size disk array with
any size parity stripe, and the corresponding
disadvantage is that the computational re-
quirements of the mapping algorlthm are high
compared to the block-design-based ap-

proaches. Analyzes response time and recon-

struction time using this technique via an ana-
lytic model, and finds substantial benefits m

both.

MONTGOMERY SECURITIES 1991. RAID: A technol-

Ogy pomed for explosive growth. Tech. Rep.
DJIA: 2902, Montgomery Securities, San Fran-
c] SCO, Calif. Industry projections of market
growth for RAID systems from 1990 to 1995,

MUNTZ, R. R, AND LUI, C, S. 1990. Performance

analysis of disk arrays under fadure. In Pro-
ceedings of the 16th Conference on Very Large
Data Bases. Morgan Kaufmann, San Mateo,

Calif. Proposes and evaluates the “clustered-
RAID” technique for improving the fadure-re-
covery performance in redundant disk arrays.
It leaves open the problem of implementation:
no techmque for efficiently mapping data units

to physical disks is presented. Analyzes via an
analytical model the technique and two poten-
tial “optimlzatlons” to the reconstruction algo-
rithm, and finds significant benefits to all three.

NELSON, R, AND TANTAWI, A. N. 1988, Approxi-

mate analysis of fork/join synchronization in

parallel queues. IEEE Trans. Comput. 37, 6

(June), 739-743 Approximates response time
in fork-join queuing systems with k > = 2
servers where each logical request always forks
into k requests.

NG, S. 1994. Crossbar disk array for Improved
rehability and performance In Proceedz ng.s the
1994 Intern atmnal S.vmposzum on Computer
Architecture, IEEE, New York, Introduces
schemes to protect against multiple failures of

disk support hardware such as dmk controllers
and strings.

NG, S AND MATTSON, D. 1991 Maintaining good

performance in disk arrays during failure- via
uniform parity group distribution. In Proceed-
ings of the 1st International Symposium on
High Performance Distributed Computing.

260–269 Uses balanced, incomplete block de-
signs to distribute the extra load from a failed
disk equally among other disks in the array.

ORJI, C. U. AND Scmwowm, J. A, 1993. Doubly
distorted mirrors. In Proceeduzgs of the ACM
SIGMOD International Conference on Manage-

ment of Data. ACM, New York. Describes a
technique called dmtorted mirrors that parti-

tions each of two mirrored disks into two halves,
one of which lays out the data in a standard
fashion, one of which “distorts” the data layout.
This accelerates writes to the distorted copy
while preserving the abihty to read large files
sequentially.

P~TTERSON, D. A. ANr) HENNI?,SSY, J L. 1994.
Computer Organization and Design: The Hard-
ware /Sof?ware Interface. Morgan Kaufmann,
San Mateo, Cahf. A popular undergraduate
book in computer architecture, the discussion
on technology trends are most relevant to read-
ers of this article,

PATTERSON, D, A., GIBSON, G., AND KATZ, R. H.
1988. A case for redundant arrays of inexpen-

swe disks (RAID) In In ternatlonat Con ference
on Management of Data (SIGMOD). ACM, New
York, 109–116. The first published Berkeley

paper on RAIDs, It gzves all the RAID nomen-
clature.

PATTERSON, R. H., ” GIBSON, G. A., AND SATyA-
NARAYANAN, M, 1993. A status report on re-

ACM Computing Surveys. Vol 26, No 2, June 1994

RAID ● 185

search in transparent informed prefetching.
ACM Oper. Syst. Rev. 27, 2 (Apr.), 21-34. Ex-

pands on using application hints for file
prefetching in Gibson et al. [1992]. Hints should

disclose access patterns, not advise caching/
prefetching actions. Greatest potential from
converting serial accesses into concurrent ac-
cesses on a disk array. Presents preliminary
results of user-level prefetching tests.

PETERSON, E. W. AND WELDON, E. J. 1972.
Error-Correcting Codes. 2nd ed. MIT Press,

Cambridge, Mass. A general textbook on the
mathematics of error-correcting codes.

ROSENBLUM, M. AND OUSTERHOUT, J. K. 1991. The

design and implementation of a log-structured
file system. in Proceedwzgs of the 13th ACM

Symposium on Operating Systems Principles.
ACM, New York. Describes a log-structured file

system that makes all writes to disk sequen-
tial. Discusses efficient ways to clean the disk
to prevent excessive fragmentation.

SALEM, K. AND GARCIA-M• LINA, H. 1986. Disk
striping. In Proceedings of the 2nd Interna-
tional Conference on Data Engineering. IEEE
Computer Society, Washington, D. C., 336-342.
Early paper discussing disk striping.

SCHEUERMANN, P., WEIKUM, G., AND ZABBACK, P.
1991. Automatic tuning of data placement and

load balancing in disk arrays. Database Sys-

tems for Next-Generation Applications: Princ-
iples and Practzce. Describes heuristics for allo-
cating tiles to disks to minimize disk skew.

SCHULZE, M., GIBSON, G. KATZ, R., AND PATTERSON,
D. 1989. How reliable is a RAID, In Proce-

dures of the IEEE Computer Society Interna-
tional Conference (COMPCON). IEEE, New
York. Gives a reliability calculation for the
electronics as well as the disks for RAIDS.

SELTZER, M. I., CHEN, P. M., AND OUSTERHOUT, J. K.
1990. Disk scheduling revisited. In Proceed-

ings of the Winter 1990 USENIX Technical
Conference. USENIX Association, Berkeley,

Calif. 313–324. Reexamines the problem of how

to efficiently schedule a large number of disk
accesses when accounting for both seek and

rotational positioning delays.

STODOLSKY, D. AND GIBSON, G. A. 1993. Parity
logging: Overcoming the small write problem
in redundant disk arrays. In Proceedings of the
1993 International Symposium on Computer
Architecture. Increases throughput for work-

loads emphasizing small, random write ac-
cesses in a redundant disk array by logging

changes to the parity in a segmented log for
efficient application later. Log segmentation al-

lows log operations that are large enough to be
efficient yet small enough to allow in-memory

application of a log segment.

TAIT, C. D. AND DUCHAMP, D. 1991. Detection and

exploitation of file working sets. In Proceedings
of the International Conference on Distributed
Computzng Systems. IEEE Computer Society,
Washington, D. C., 2–9. Dynamically builds and
maintains program and data access trees to
predict future file accesses. The current pat-
tern is matched with previous trees to prefetch
data and manage the local cache in a dis-
tributed file system. Trace-driven simulation
shows reduced cache miss rates over a simple
LRU algorithm.

WEIKUM, G. AND ZABBACK, P. 1992. Tuning of

striping units in disk-array-based file systems.
In Proceedings of the 2nd International Work-

shop on Research Issues on Data Engineering:
Transaction and Query Processing. IEEE Com-
puter Society, Washington, D. C., 80–87. Pro-

poses file-specific striping units instead of a
single, global one for all files.

WILMOT, R. B. 1989. File usage patterns from
SMF data: Highly skewed usage. In the 20th
ZnternatLonal Conference on Management and
performance Evahatton of Computer systems.

Computer Measurement Group, 668-677. Re-

ports on how files are accessed on four large
data centers and finds that a small number of
files account for most of all disk 1/0.

Recewed November 1993; final revision accepted March 1994

ACM Computing Surveys, Vol. 26, No. 2, June 1994

